首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   2篇
  139篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   12篇
  2012年   15篇
  2011年   12篇
  2010年   4篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   11篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1996年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
101.
Although Nα-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).  相似文献   
102.
Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.  相似文献   
103.
Carotenoids represent a group of widely distributed pigments derived from the general isoprenoid biosynthetic pathway that possess diverse functions in plant primary and secondary metabolism. Modification of α- and β-carotene backbones depends in part on ring hydroxylation. Two ferredoxin-dependent non-heme di-iron monooxygenases (AtB1 and AtB2) that mainly catalyze in vivo β-carotene hydroxylations of β,β-carotenoids, and two heme-containing cytochrome P450 (CYP) monooxygenases (CYP97A3 and CYP97C1) that preferentially hydroxylate the ε-ring of α-carotene or the β-ring of β,ε-carotenoids, have been characterized in Arabidopsis by analysis of loss-of-function mutant phenotypes. We further investigated functional roles of both hydroxylase classes in modification of the β- and ε-rings of α-carotene and β-carotene through over-expression of AtB1, CYP97A3, CYP97C1, and the hydroxylase candidate CYP97B3. Since carotenoid hydroxylation is required for generation of ketocarotenoids by the bkt1(CrtO) β-carotene ketolase, all hydroxylase constructs were also introduced into an Arabidopsis line expressing the Haematococcus pluvalis bkt1 β-carotene ketolase. Analysis of foliar carotenoid profiles in lines overexpressing the individual hydroxylases indicate a role for CYP97B3 in carotenoid biosynthesis, confirm and extend previous findings of hydroxylase activities based on knock-out mutants, and suggest functions of the multifunctional enzymes in carotenoid biosynthesis. Hydroxylase over-expression in combination with bkt1 did not result in ketocarotenoid accumulation, but instead unexpected patterns of α-carotene derivatives, accompanied by a reduction of α-carotene, were observed. These data suggest possible interactions between the β-carotene ketolase bkt1 and the hydroxylases that impact partitioning of carbon flux into different carotenoid branch pathways.  相似文献   
104.
To assess the role of Bcl-X(L) and its splice derivative, Bcl-X(S), in staurosporine-induced cell death, we used a dopaminergic cell line, MN9D, transfected with bcl-xL (MN9D/Bcl-X(L)), bcl-xS (MN9D/Bcl-X(S)), or control vector (MN9D/Neo). Only 8.6% of MN9D/Neo cells survived after 24 h of 1 microM staurosporine treatment. Caspase activity was implicated because a caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk), attenuated staurosporine-induced cell death. Bcl-X(L) rescued MN9D cells from death (89.4% viable cells), whereas Bcl-X(S) had little or no effect. Bcl-X(L) prevented morphologically apoptotic changes as well as cleavage of poly(ADP-ribose)polymerase (PARP) induced by staurosporine. It is interesting that a small Bax-immunoreactive protein appeared 4-8 h after PARP cleavage in MN9D/Neo cells. The appearance of the small Bax-immunoreactive protein, however, may be cell type-specific as it was not observed in PC12 cells after staurosporine treatment. The sequential cleavage of PARP and the appearance of the small Bax-immunoreactive protein in MN9D cells were blocked either by Z-VAD-fmk or by Bcl-X(L). Thus, our present study suggests that Bcl-X(L) but not Bcl-X(S) prevents staurosporine-induced apoptosis by inhibiting the caspase activation that may be directly or indirectly responsible for the appearance of the small Bax-immunoreactive protein in some types of neurons.  相似文献   
105.
106.
107.
108.
Recent evidence suggests that brain-derived neurotrophic factor (BDNF) regulates food intake and the control of body weight. A common polymorphism in human BDNF, Val66Met (single-nucleotide polymorphism database (dbSNP) no. rs6265), impairs intracellular trafficking, resulting in the reduced secretion of BDNF. Several European studies have indicated that Val66Met is associated with BMI. In this study, we examined the association of the Val66Met polymorphism with BMI in Koreans (n = 20,270) from three independent epidemiological cohorts. All three studies observed a consistent association of this polymorphism with BMI, and their combined analysis demonstrated a robust correlation (β = -0.17 ± 0.03 and P = 5.6 × 10(-8)). We also examined the effect of smoking on the link between Val66Met and BMI. The association of Val66Met with BMI was statistically significant only in the smoking group, reflecting a possible interaction between smoking and the BDNF polymorphism for BMI. Thus, we have confirmed BDNF as a genetic risk factor for BMI in an Asian population and hypothesize that the Val66Met mutation influences individual differences in BMI. In addition, smoking might interact with BDNF Val66Met to modulate BMI.  相似文献   
109.
Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain?and dimerizes with ancestral SRGAP2 to inhibit?its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its?human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.  相似文献   
110.
Modified atmosphere based on lack of O2 offers a safe, residue-free alternative to chemical fumigants for pest control in stored grains. In this study, we intended to determine whether elevated CO2 (at a biologically achievable level) has an enhanced suppressive effect over low O2 atmosphere alone on the cowpea bruchid (Callosobruchus maculatus), a storage pest of cowpea and other legumes. Experiments were performed under two modified atmospheric conditions, (1) 2% O2 + 18% CO2 + 80% N2 and (2) 2% O2 + 98% N2. Both hypoxic environments significantly affected the development and survival of all insect developmental stages. Eggs were most vulnerable to hypoxia, particularly at the early stage (4–6 h old), surviving only up to a maximum of 2 days in both treatments. These were followed by adults, pupae and larvae, in order of decreasing susceptibility. The 3rd and 4th instar larvae were most resilient to hypoxia and could survive up to 20 days of low O2. The presence of 18% CO2 significantly increased the mortality of adults, the later stage of eggs, as well as 1st and 4th instar larvae caused by hypoxia. However, the surviving insects exhibited faster development, evidenced by their earlier emergence from cowpea seeds compared to those without CO2. One interesting observation was the frequent, premature opening of the emergence windows in the 4th instar larvae when CO2 was involved. This phenomenon was not observed at all in insects stressed by low O2 alone. Differential expression profiling of metabolic genes and proteolytic activity of midgut digestive enzymes suggested that the rate of metabolic activity could contribute in part to the difference in insect development and survival under hypoxia in the presence and absence of CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号