首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19077篇
  免费   1777篇
  国内免费   1613篇
  2024年   44篇
  2023年   224篇
  2022年   494篇
  2021年   894篇
  2020年   639篇
  2019年   789篇
  2018年   831篇
  2017年   592篇
  2016年   835篇
  2015年   1213篇
  2014年   1410篇
  2013年   1530篇
  2012年   1742篇
  2011年   1634篇
  2010年   1064篇
  2009年   815篇
  2008年   1070篇
  2007年   879篇
  2006年   790篇
  2005年   725篇
  2004年   665篇
  2003年   662篇
  2002年   550篇
  2001年   239篇
  2000年   201篇
  1999年   220篇
  1998年   161篇
  1997年   108篇
  1996年   97篇
  1995年   98篇
  1994年   108篇
  1993年   66篇
  1992年   96篇
  1991年   82篇
  1990年   62篇
  1989年   61篇
  1988年   56篇
  1987年   37篇
  1986年   48篇
  1985年   53篇
  1984年   43篇
  1983年   33篇
  1982年   38篇
  1981年   37篇
  1980年   29篇
  1979年   26篇
  1978年   26篇
  1976年   30篇
  1974年   31篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 644 毫秒
911.
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.  相似文献   
912.
The treatment of cancer has made great progress. However, drug resistance remains problematic. Multiple physiologic processes of tumor development can be dominated by central and sympathetic nervous systems. The interactions between the nervous system, immune system, and tumor occur consistently and dynamically. Recent evidence suggests that nerves and neural signals are intimately involved in the development of resistance to cancer therapies. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the potential new strategies for targeting the neural signaling pathway to improve the effectiveness of chemotherapies, targeted therapies, and immunotherapies.  相似文献   
913.
914.
Cheng  Chunyan  Wang  Xing  Liu  Xuejiao  Yang  Shuqiong  Yu  Xiaqing  Qian  Chuntao  Li  Ji  Lou  Qunfeng  Chen  Jinfeng 《Journal of plant research》2019,132(6):813-823

The southern root-knot nematode (RKN), Meloidogyne incognita (Kofoid & White) Chitwood, is one of most destructive species of plant parasitic nematodes, causing significant economic losses to numerous crops including cucumber (Cucumis sativus L. 2n = 14). No commercial cultivar is currently available with resistance to RKN, severely hindering the genetic improvement of RKN resistance in cucumber. An introgression line, IL10-1, derived from the interspecific hybridization between the wild species Cucumis hystrix Chakr. (2n = 24, HH) and cucumber, was identified with resistance to RKN. In this study, an ultrahigh-density genetic linkage bin-map, composed of high-quality single-nucleotide polymorphisms (SNPs), was constructed based on low-coverage sequences of the F2:6 recombinant inbred lines derived from the cross between inbred line IL10-1 and cultivar ‘Beijingjietou’ CC3 (hereinafter referred to as CC3). Three QTLs were identified accounting for 13.36% (qRKN1-1), 9.07% and 9.58% (qRKN5-1 and qRKN5-2) of the resistance variation, respectively. Finally, four genes with nonsynonymous SNPs from chromosome 5 were speculated to be the candidate RKN-resistant related genes, with annotation involved in disease resistance. Though several gaps still exist on the bin-map, our results could potentially be used in breeding programs and establish an understanding of the associated mechanisms underlying RKN resistance in cucumber.

  相似文献   
915.
Li  Liang  Zhang  Xiaochai  He  Ningfang  Wang  Xiaoyang  Zhu  Pengyue  Ji  Zhiyong 《Plant Molecular Biology Reporter》2019,37(5-6):421-435
Plant Molecular Biology Reporter - Due to the hypersaline environment cell of Dunaliella salina can change its morphology, growth, and pigment for adapting to the stress. Despite the fact D. salina...  相似文献   
916.
Chemoresistance often causes treatment failure of B-cell acute lymphoblastic leukemia (B-ALL). However, the mechanism remains unclear at present. Herein, overexpression of heme oxygenase-1 (HO-1) was found in the bone marrow stromal cells (BMSCs) from B-ALL patients developing resistance to vincristine (VCR), a chemotherapeutic agent. Two B-ALL cell lines Super B15 and CCRF-SB were cocultured with BMSCs transfected with lentivirus to regulate the expression of HO-1. Silencing HO-1 expression in BMSCs increased the apoptotic rates of B-ALL cell lines induced by VCR, whereas upregulating HO-1 expression reduced the rate. Cell cycle can be arrested in the G2/M phase by VCR. In contrast, B-ALL cells were arrested in the G0/G1 phase due to HO-1 overexpression in BMSCs, which avoided damage from the G2/M phase. Vascular endothelial growth factor (VEGF) in BMSCs, as a key factor in the microenvironment-associated chemoresistance, was also positively coexpressed with HO-1. VEGF secretion was markedly increased in BMSCs with HO-1 upregulation but decreased in BMSCs with HO-1 silencing. B-ALL cell lines became resistant to VCR when cultured with VEGF recombinant protein, so VEGF secretion induced by HO-1 expression may promote the VCR resistance of B-ALL cells. As to the molecular mechanism, the PI3K/AKT pathway mediated regulation of VEGF by HO-1. In conclusion, this study clarifies a mechanism by which B-ALL is induced to resist VCR through HO-1 overexpression in BMSCs, and provides a novel strategy for overcoming VCR resistance in clinical practice.  相似文献   
917.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   
918.
919.
Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow–derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.  相似文献   
920.
Angiogenesis is an important process in atherosclerosis. ErbB2 was proved to have an important role in vascular development, but it is still unclear whether Erbin expresses in vessels as well as its location and function in the vessels. In the current study, we investigated the location and function of Erbin in human umbilical veins. The human umbilical veins were prepared, and immunofluorescent analysis was performed to determine the expression of Erbin. Human umbilical vein endothelial cells (HUVECs) were cultured and the lentivirus (LV) containing Erbin RNAi was also prepared. After transfection with the lentivirus, CCK-8 assay and Annexin V-PI assay were used for cell proliferation and apoptosis, respectively. Cell migration was studied using the scratch wound healing assay and the transwell assay. The capillary-like tube formation assay was performed to illustrate the effect of Erbin on HUVEC tube formation. Expression of signaling pathway molecules was assessed with Western blot. The immunofluorescent analysis suggested that Erbin expressed in human umbilical veins and the majority of the Erbin is strongly colocalized in endothelial cells. Although knockdown of Erbin did not affect HUVEC proliferation and apoptosis, it significantly suppressed HUVEC migration and tubular structure formation. Erbin knockdown showed no effect on the ERK1/2 and Smad2/3 signaling pathways but significantly promoted Smad1/5 phosphorylation and nuclear translocation. Ablation of the Smad1/5 pathway decreased the effects of Erbin on endothelial cells. Erbin is mainly localized in endothelial cells in human umbilical veins and plays a critical role in endothelial cell migration and tubular formation via the Smad1/5 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号