首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19077篇
  免费   1777篇
  国内免费   1613篇
  2024年   44篇
  2023年   224篇
  2022年   494篇
  2021年   894篇
  2020年   639篇
  2019年   789篇
  2018年   831篇
  2017年   592篇
  2016年   835篇
  2015年   1213篇
  2014年   1410篇
  2013年   1530篇
  2012年   1742篇
  2011年   1634篇
  2010年   1064篇
  2009年   815篇
  2008年   1070篇
  2007年   879篇
  2006年   790篇
  2005年   725篇
  2004年   665篇
  2003年   662篇
  2002年   550篇
  2001年   239篇
  2000年   201篇
  1999年   220篇
  1998年   161篇
  1997年   108篇
  1996年   97篇
  1995年   98篇
  1994年   108篇
  1993年   66篇
  1992年   96篇
  1991年   82篇
  1990年   62篇
  1989年   61篇
  1988年   56篇
  1987年   37篇
  1986年   48篇
  1985年   53篇
  1984年   43篇
  1983年   33篇
  1982年   38篇
  1981年   37篇
  1980年   29篇
  1979年   26篇
  1978年   26篇
  1976年   30篇
  1974年   31篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
We applied scanning electron microscopy combined with imaging and morphometric techniques to analyze the dorsal topography and morphology of short portal vessels linking the capillary beds of the pituitary neural and anterior lobes in adult male albino rats. The pituitary microvasculature was replicated by intracarotid injection of Batson's No. 17 compound producing plastic casts that were advantageous for comprehensive morphometric analyses using an imaging device. The analysis revealed the existence of two types of portal vessels having quantitatively different morphological properties. The bilateral venular plexus of 3–4 vessels located at the base of the infundibular stalk (each venule measuring 300 m in length and 32 m in diameter) appears to be the major part of the short portal system in the dorsum of the rat pituitary gland. Narrower capillary-like shunt vessels (6.8 m in diameter), of about the same length as the venules, were situated throughout other subregions of the intermediate lobe cleft. The short portal vessels of both types made direct anastomoses with the capillary networks in the neural and anterior lobes. The neural lobe capillaries were twice as numerous (1324 per mm2), and only half as wide (6.2 m), as the sinusoidal capillaries in the anterior lobe (density of 637 per mm2; diameter of 13.7 m). The topographical position of the portal venular system suggests that the caudolateral subregions of the pituitary neural and anterior lobes have a functional relationship dependent on rapid interlobe transfer of neurohumoral factors such as hormones via the portal blood. This process appears to be supplemented throughout the rest of the cleft between the two lobes by a small number of capillary shunts that supply the epithelial cell lobules of the intermediate lobe in situ. The findings collectively indicate that this portal system provides a constant stream of neurohumoral information that is shared moment-by-moment between the pituitary neural and anterior lobes.  相似文献   
132.
【目的】葡聚糖酶是饲用添加剂的重要成分,本研究旨在从湖羊消化道微生物中挖掘性质优良的GH9家族葡聚糖酶基因,用于研发新型饲用酶制剂。【方法】从湖羊瘤胃微生物cDNA中扩增IDSGLUC9-25基因,在大肠杆菌中进行异源表达,对重组蛋白进行诱导表达和纯化,研究重组蛋白的酶学性质和底物水解模式。【结果】IDSGLUC9-25基因编码527个氨基酸,包含一个CelD_N结构和一个GH9家族催化结构域;重组蛋白rIDSGLUC9-25分子量约为62.7 kDa,最适反应温度和pH分别为40℃和6.0,在30-50℃下活性较高,在pH 4.0-8.0范围内能够保持较高的稳定性,经pH 4.0-8.0缓冲液处理1 h后残余活性均大于90%;底物谱分析表明,rIDSGLUC9-25能催化大麦β-葡聚糖、苔藓地衣多糖、魔芋胶和木葡聚糖,比活性分别为(443.55±24.48)、(65.56±5.98)、(122.37±2.85)和(159.16±7.73) U/mg;利用薄层色谱法(thin layer chromatography, TLC)和高效液相色谱法(high performance liquid chromatography, HPLC)分析水解产物发现,rIDSGLUC9-25降解大麦葡聚糖主要生成纤维三糖(占总还原糖64.19%±1.19%)和纤维四糖(占总还原糖26.24%±0.12%),催化地衣多糖主要生成纤维三糖(占总还原糖78.46%±0.89%)。【结论】本研究报道了一种来自密螺旋体属细菌的内切β-1,4-葡聚糖酶IDSGLUC9-25 (EC 3.2.1.4),能高效催化多糖底物生成纤维三糖和纤维四糖,为研发饲用酶制剂和制备低聚寡糖建立基础。  相似文献   
133.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
134.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   
135.
The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.  相似文献   
136.

Aim

Despite the complexity of population dynamics, most studies concerning current changes in bird populations reduce the trajectory of population change to a linear trend. This may hide more complex patterns reflecting responses of bird populations to changing anthropogenic pressures. Here, we address this complexity by means of multivariate analysis and attribute different components of bird population dynamics to different potential drivers.

Location

Czech Republic.

Methods

We used data on population trajectories (1982–2019) of 111 common breeding bird species, decomposed them into independent components by means of the principal component analysis (PCA), and related these components to multiple potential drivers comprising climate, land use change and species' life histories.

Results

The first two ordination axes explained substantial proportion of variability of population dynamics (42.0 and 12.5% of variation in PC1 and PC2 respectively). The first axis captured linear population trend. Species with increasing populations were characterized mostly by long lifespan and warmer climatic niches. The effect of habitat was less pronounced but still significant, with negative trends being typical for farmland birds, while positive trends characterized birds of deciduous forests. The second axis captured the contrast between hump-shaped and U-shaped population trajectories and was even more strongly associated with species traits. Species migrating longer distances and species with narrower temperature niches revealed hump-shaped population trends, so that their populations mostly increased before 2000 and then declined. These patterns are supported by the trends of total abundances of respective ecological groups.

Main Conclusion

Although habitat transformation apparently drives population trajectories in some species groups, climate change and associated species traits represent crucial drivers of complex population dynamics of central European birds. Decomposing population dynamics into separate components brings unique insights into non-trivial patterns of population change and their drivers, and may potentially indicate changes in the regime of anthropogenic effects on biodiversity.  相似文献   
137.
138.
Chromosome numbers are reported for 19 collections representing 16 AsiaticPotentilla taxa. The first chromosome records are reported forP. desertorum Bunge var.arnavatensis Wolf (2n=28),P. festiva Soják (2n=28),P. griffithii Hook f. subsp.beauvaisii (Cardot) Soják (2n=42),P. micropetala D. Don subsp.byssitecta (Soják) Měsí?ek etSoják (2n=14),P. mollissima Lehm. (2n=28),P. moorcroftii Wall. exLehm. (2n=42),P. multicaulis Bunge (2n=14),P. [x]omissa Soják (2n=35, 56, 70) andP. stanjukoviczii Ovcz. exKoczk. (2n=14). Counts differing from those previously recorded are given forP. algida Soják (2n=56) andP. flagellaris Willd. exSchlecht. (2n=42). Chromosome numbers of the following species were confirmed:P. [x]agrimonioides Bieb. (2n=42),P. chinensis Ser. in DC. (2n=14),P. fragarioides L. (2n=14),P. lineata Trev. (2n=14) andP. sericea L. (2n=28). Taxonomy is briefly discussed. A new combinationP. micropetala D. Don subsp.byssitecta (Soják) Měsí?ek etSoják stat. nov. is proposed.  相似文献   
139.
140.
Zanthoxylum armatum and Zanthoxylum bungeanum, known as ‘Chinese pepper’, are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号