首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   10篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1995年   1篇
  1979年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
31.
In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.  相似文献   
32.
Hills M  Jeyapalan JN  Foxon JL  Royle NJ 《Genomics》2007,89(4):480-489
Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.  相似文献   
33.
34.
35.
Allopolyploidy, or the combination of two or more distinct genomes in one nucleus, is usually accompanied by radical genomic changes involving transposable elements (TEs). The dynamics of TEs after an allopolyploidization event are poorly understood. In this study, we analyzed the methylation state and genetic rearrangements of a high copied, newly amplified terminal-repeat retrotransposon in miniature (TRIM) family in wheat termed Veju. We found that Veju insertion sites underwent massive methylation changes in the first four generations of a newly formed wheat allohexaploid. Hypomethylation or hypermethylation occurred in ∼43% of the tested insertion sites; while hypomethylation was significantly predominant in the first three generations of the newly formed allohexaploid, hypermethylation became predominant in the subsequent generation. In addition, we determined that the methylation state of Veju long terminal repeats (LTRs) might be correlated with the deletion and/or insertion of the TE. While most of the methylation changes and deletions of Veju occurred in the first generation of the newly formed allohexaploid, most Veju insertions were seen in the second generation. Finally, using quantitative PCR, we quantitatively assessed the genome composition of Veju in the newly formed allohexaploid and found that up to 50% of Veju LTRs were deleted in the first generation. Retrotransposition bursts in subsequent generations, however, led to increases in Veju elements. In light of these findings, the underlying mechanisms of TRIM rearrangements are discussed.TRANSPOSABLE elements (TEs) are DNA sequences that range in size from several hundred base pairs to >15 kb and that have the ability to move to different locations within the genome. TE movement occurs through either a copy-and-paste mechanism involving RNA intermediates (class 1) or a cut-and-paste mechanism involving DNA intermediates (class 2). Class 1 elements are also called retrotransposons, or retroelements, and comprise two main types: (1) long terminal repeat (LTR) retrotransposons, flanked by LTRs, and (2) non-LTR elements (such as long interspersed nuclear elements and short interspersed nuclear elements).LTR retrotransposons are the most abundant mobile elements in plant genomes (Feschotte et al. 2002), as the replicative mode of retroelement transposition enables the LTR retrotransposon to accrue in high copy number. Indeed, in some grasses, LTR retrotransposons represent up to 90% of the genome (Bennetzen and Kellogg 1997; Feschotte et al. 2002). As such, retrotransposon sequences function well as substrates for illegitimate and unequal recombinations that can lead to a variety of mutations, such as deletions, insertions, translocations, and others (Parisod et al. 2009).The replicative nature of TEs seems to be stimulated by a variety of specific stress conditions (reviewed by Wessler 1996; Capy et al. 2000; Grandbastien et al. 2005), including challenges to the genome such as interspecific hybridization, an idea first proposed by Barbara McClintock 26 years ago (McClintock 1984). Accordingly, allopolyploidization is usually coupled with rapid and reproducible genomic changes, including the elimination of DNA sequences (Liu et al. 1998a,b; Ozkan et al. 2001; Shaked et al. 2001; Adams and Wendel 2005b; Skalicka et al. 2005), gene silencing (Chen and Pikaard 1997; Comai et al. 2000; Kashkush et al. 2002; Simons et al. 2006), alteration of cytosine methylation (Shaked et al. 2001; Madlung et al. 2002; Salmon et al. 2005; Beaulieu et al. 2009; Xu et al. 2009), activation of genes and retrotransposons (Kashkush et al. 2002, 2003; O''Neill et al. 2002), massively altered gene expression patterns (Kashkush et al. 2002; Wang et al. 2006), and organ-specific subfunctionalization, i.e., differential expression of homeoalleles in different tissues and at different developmental stages (Adams et al. 2003; Adams and Wendel 2004). These and other studies (Levy and Feldman 2002; Osborn et al. 2003; Adams and Wendel 2005a; Rapp and Wendel 2005; Chen and Ni 2006; Chen 2007) demonstrate the dynamic nature of allopolyploid plant genomes.Although allopolyploidization has generally been assumed to induce large bursts of TE activity (Matzke and Matzke 1998), several studies that focused on different allopolyploid systems failed to provide any evidence for a transposition burst and offered only limited evidence for the transposition of specific TEs (Madlung et al. 2005; Ainouche et al. 2009; Beaulieu et al. 2009). In newly formed Arabidopsis allopolyploids, no evidence for transposition bursts was reported (Beaulieu et al. 2009), although limited evidence suggested that transposition events occurred in a specific TE called Sunfish (Madlung et al. 2005). Little evidence of TE transposition was found in a natural population of the 150-year-old allopolyploid, Spartina anglica (Ainouche et al. 2009), and no evidence of transposition of Wis 2-1A retrotransposons in a newly formed wheat allotetraploid was present (Kashkush et al. 2003). The results of these works and others indicate that, in the short term, TE proliferation after allopolyploidization may be restricted to a few specific TEs in particular allopolyploidy systems (Parisod et al. 2009).This study entailed a detailed investigation of the methylation patterns and rearrangements of a one terminal-repeat retrotransposon in miniature (TRIM) family in wheat termed Veju. TRIM elements possess the classical structure of LTR retrotransposons, but they are distinguished by their small overall sizes (0.4 to ∼2.5 kb). A nonautonomous retrotransposon, Veju is 2520 bp long with 374 bp of identical LTRs, yet does not contain the proteins required for retrotransposition (Sanmiguel et al. 2002). However, because Veju elements contain polypurine tracts (PPTs) and primer binding sites (PBSs), they are capable of transposing if the retrotransposition proteins are available from another source. In addition, the identical sequences of the Veju 5′ and 3′ LTRs indicate that some members of the Veju family retain retrotransposition activity.In silico analysis of Veju sequences revealed them to be one of the most active and most recently inserted sequences in the wheat genome (Sanmiguel et al. 2002; Sabot et al. 2005a). As such, we have determined and compared the methylation patterns of >880 Veju insertion sites in the first four generations of a newly formed wheat allohexaploid, as well as in the parental lines. We then tested the correlation between the cytosine methylation and genetic rearrangements (i.e., deletions and insertions) of Veju and addressed the precise developmental timing of these rearrangements. Finally, we successfully tested overall changes in the copy numbers of Veju in the newly formed allohexaploid using real-time quantitative PCR.  相似文献   
36.
Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.  相似文献   
37.
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.  相似文献   
38.
The occurrence of polyandry in Planococcus citri , presumed by earlier observations of mating behavior, was confirmed using microsatellite genotyping of pools of over 400 eggs resulting from controlled crosses of one female with two males. The genetic contribution of both mated males was confirmed in 13 out of 43 crosses. In three crosses it was possible to determine that only the first male fertilized the eggs, which may be due to sperm competition or unviable sperm supply. The microsatellite analysis also allowed the confirmation of aspects of the chromosomal inheritance detected previously in cytogenetic studies in Planococcus citri , namely that only one of the alleles is transmitted by the male, indicating that the males are functionally haploid, supporting the observation of Paternal Genome Elimination (PGE) in these insects.  相似文献   
39.
MicroRNAs are short noncoding RNAs that are implicated in cell self- renewal and cancer development. We show that miR-378 is up-regulated in human cancers and found that tumor cells transfected with miR-378 acquired properties of tumor stem cells, including cell self-renewal. Overexpression of miR-378 enhanced cell survival and colony formation. Isolated from a single-cell colony, the miR-378-expressing cells formed tumors in nude mice at low cell densities. These cells expressed higher levels of miR-378 and formed more and larger spheres and colonies. We found that the miR-378-expressing cells contained a large number of side population cells and could undergo differentiation. Cells transfected with miR-378 expressed increased levels of Sox2. Expression of miR-378 and Sox2 was found correlated significantly in cancer cell lines and in cancer patient specimens. We also observed opposite levels of vimentin in the cancer cell lines and human breast carcinoma specimens. We further demonstrated that vimentin is a target of miR-378, and ectopic transfection of vimentin inhibited Sox2 expression, resulting in decreased cell survival. Silencing vimentin promoted Sox2 expression and cell survival. Our study demonstrates that miR-378 is a regulator of stem cell marker Sox2 by targeting vimentin, which may serve as a new tool in studying the role of stem cells in tumorigenesis.  相似文献   
40.
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号