首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   17篇
  190篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   16篇
  2010年   9篇
  2009年   14篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   8篇
  2004年   12篇
  2003年   2篇
  2002年   11篇
  2001年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1966年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
131.
132.
Human endometrium resists embryo implantation except during the 'window of receptivity'. A change in endometrial gene expression is required for the development of receptivity. Uterine calbindin-D28k (CaBP-28k) is involved in the regulation of endometrial receptivity by intracellular Ca2+. Currently, this protein is known to be mainly expressed in brain, kidneys, and pancreas, but potential role(s) of CaBP-28k in the human uterus during the menstrual cycle remain to be clarified. Thus, in this study we demonstrated the expression of CaBP-28k in the human endometrium in distinct menstrual phases. During the human menstrual cycle, uterine expression levels of CaBP-28k mRNA and protein increased in the proliferative phase and fluctuated in these tissues, compared with that observed in other phases. We assessed the effects of two sex-steroid hormones, 17beta-estradiol (E2) and progesterone (P4), on the expression of CaBP-28k in Ishikawa cells. A significant increase in the expression of CaBP-28k mRNA was observed at the concentrations of E2 (10(-9 to -7) M). In addition, spatial expression of CaBP-28k protein was detected by immunohistochemistry. CaBP-28k was abundantly localized in the cytoplasm of the luminal and glandular epithelial cells during the proliferative phases (early-, mid-, late-) and early-secretory phase of menstrual cycle. Taken together, these results indicate that CaBP-28k, a uterine calcium binding protein, is abundantly expressed in the human endometrium, suggesting that uterine expression of CaBP-28k may be involved in reproductive function during the human menstrual cycle.  相似文献   
133.
Calbindin-D9k levels in the rat uterus are under the control of estrogen. We found that the putative estrogen response element (ERE) failed to bind to the estrogen receptor from the mouse uterus. We therefore isolated mouse genomic clones of the calbindin-D9K gene and analyzed their expression in the mouse uterus. The promoter region of the gene contained several putative steroid hormone receptor binding sites. To characterize these elements, we constructed several promoter-reporter plasmids, and transiently transfected them into T47D breast cancer cells that express both estrogen and progesterone receptors. Luciferase activity was expressed from a promoter region containing the putative progesterone response element (PRE) and expression was stimulated by progesterone. In the uterus of oophorectomized mice, the calbindin-D9k gene was up-regulated by progesterone, but not by estrogen. These results suggest that the mouse uterine calbindin-D9k gene is expressed under the control of a PRE.  相似文献   
134.
135.
The influence of carbon source and aeration rate on fermentation broth rheology, mycelial morphology and red pigment production of Paecilomyces sinclairii was investigated in a 5-l stirred-tank bioreactor. The characteristics of P. sinclairii grown on starch and on sucrose medium were comparatively studied: the specific growth rate in sucrose medium (0.04 h(-1)) was higher than that in starch medium, whereas the specific production rate of red pigments (0.04 gg(-1)d(-1)) was favorable in starch medium. P. sinclairii grown in sucrose medium were highly branched and showed longer hyphal lengths than that in starch medium. The consistency index (K) in sucrose medium was markedly higher than that in starch medium due to higher cell mass, while the higher values of flow behavior index (n) were indicated at the late stationary phase in starch medium. The aeration rate was varied within the ranges from 0.5 to 3.5 vvm while running the fermentation at mild agitation of 150 rpm using sucrose as the carbon source. The maximum biomass concentration of P. sinclairii was about 33 gl(-1) with an aeration rate of 1.5 vvm, whereas the maximum yield of red pigment production (4.73 gl(-1)) was achieved with 3.5 vvm. The highly branched cell morphology appeared at 1.5 vvm and the highly vacuolated cell morphology was observed in a high aeration rate (3.5 vvm). There was no significant variance in rheological parameters (K and n) between culture broths from different aeration conditions.  相似文献   
136.
137.
Aqueous electrochemical energy storages are of enormous attention due to their high safety and being environmentally friendly, but they must satisfy very challenging standards in energy and power densities over long repeated charging/discharging cycles. Herein, a strategy to realize high‐performance aqueous hybrid capacitors (AHCs) using pseudocapacitive negative and positive electrodes is reported. Polymer chains, which are synthesized by in situ polymerization of polyaniline on reduced graphene sheets, show fiber‐like morphologies and the redox‐reactive surface area allowing high capacitance as anode materials even at a high current density of 20 A g?1 and a high loading of ≈6 mg cm?2. Additionally, subnanoscale metal oxide particles on graphene are utilized as pseudocapacitive cathode materials and they show the approximately threefold higher capacitance than nanocrystals of ≈10 nm. Assembling these polymer chain anode and subnanoscale metal oxide cathode in full‐cell AHCs is shown to give the high energy density exceeding those of aqueous batteries along with the ≈100% capacity retention over 100 000 redox cycles. Additionally, AHCs exhibit the high power density allowing ultrafast charging, so that the switching wearable display kit with two AHCs in series can be charged within several seconds by the flexible photovoltaic module and USB switching charger.  相似文献   
138.
Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement.  相似文献   
139.
140.
Yang S  Jeung HC  Jeong HJ  Choi YH  Kim JE  Jung JJ  Rha SY  Yang WI  Chung HC 《Genomics》2007,89(4):451-459
To identify DNA copy number changes that had a direct influence on mRNA expression in gastric cancer, cDNA microarray-based comparative genomic hybridization (aCGH) and gene expression profiling were performed using 17 K cDNA microarrays. A set of 158 genes showing Pearson correlation coefficients over 0.6 between DNA copy number changes and mRNA expression level variations was selected. In an independent gene expression profiling of 60 tissue samples, the 158 genes were able to distinguish most of the normal and tumor tissues in an unsupervised hierarchical clustering, suggesting that the differential expression patterns displayed by this specific group of genes are most likely based on the gene copy number changes. Furthermore, 43 statistically significant (P<0.01) genes were selected that correctly distinguished all of the tissue samples. The copy number changes detected by aCGH can be verified by fluorescence in situ hybridization and real-time polymerase chain reaction. The selected genes include those that were previously identified as being tumor suppressors or deleted in various tumors, including GATA binding protein 4 (GATA4), monoamine oxidase A (MAOA), cyclin C (CCNC), and oncogenes including malignant fibrous histiocytoma amplified sequence 1 (MFHAS1/MASL1), high mobility group AT-hook 2 (HMGA2), PPAR binding protein (PPARBP), growth factor receptor-bound protein 7 (GRB7), and TBC1 (tre-2, BUB2, cdc16) domain family, member 1 (TBC1D1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号