首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   12篇
  166篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   10篇
  2012年   14篇
  2011年   13篇
  2010年   6篇
  2009年   12篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   12篇
  2003年   2篇
  2002年   10篇
  2001年   4篇
  1999年   2篇
  1995年   1篇
  1992年   2篇
  1984年   2篇
  1966年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
41.
Although primary human hepatocytes (PHHs) are the gold standard in drug efficacy and metabolism studies, long-term survival of PHHs and maintenance of their hepatic function are still challenging. In this study, we focused on the effect of the initial microenvironment on upregulation and long-term preservation of hepatic function of PHHs encapsulated within biodegradable hydrogel systems. PHHs were encapsulated in RGD-functionalized hybrid hydrogels with various degrees of degradability, and their hepatic functionality was analyzed. Regardless of the hydrogel elastic modulus, the combination with nondegradable hydrogels had a predominantly negative effect on the prompt engraftment of PHHs, whereas a degradable hydrogel with intermediate initial degradability was most effective in maintaining hepatic function. Efficient network formation by PHHs and cocultured cells, along with the control of hydrogel degradation, governed the hepatic functionality at an early stage and upon long-term cultivation. Under optimized conditions, expression of genes involved in biological processes such as focal adhesions, cell survival, cytoskeleton formation, and extracellular matrix interactions was significantly higher than that in a control with relatively delayed initial degradation. Thus, we suggest that the orchestrated control of initial cellular remodeling may play an important role in the maintenance of hepatic function in a three-dimensional PHH culture.  相似文献   
42.
In this study, we determined whether p53 expression affected the sensitivity of non–small cell lung cancer (NSCLC) and colon cancer cells to bleomycin (BLM). Two human NSCLC cell lines (A549 expressing wild‐type p53 and p53‐null H1299) and two colon cancer cell lines (HCT116 p53+/+ and its p53 deficient subline HCT116 p53?/?) were subjected to treatment with BLM. Cells were treated with various concentrations of BLM, and cellular viability was assessed by formazan assay. To investigate the role of p53 in BLM sensitivity, we transduced cells with adenovirus with wild‐type p53, dominant‐negative p53, and GFP control, and analyzed the effect on cellular viability. Cells expressing wild‐type p53 were more sensitive to BLM than p53‐null cells in both NSCLC and colon cancer cells. Sensitivity to BLM of the cells with wild‐type p53 was reduced by overexpression of dominant‐negative p53, while BLM sensitivity of p53‐null cells was increased by wild‐type p53 in both NSCLC cells and colon cancer cells. In conclusion, our data show that p53 sensitizes all four cancer cells lines tested to BLM toxicity and overexpression of p53 confers sensitivity to the cytotoxic activity of the anticancer agent in p53‐null cells. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:260–269, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20334  相似文献   
43.
Park CH  Uh KJ  Mulligan BP  Jeung EB  Hyun SH  Shin T  Ka H  Lee CK 《PloS one》2011,6(7):e22216
In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos.  相似文献   
44.
45.
46.
47.
Choi JH  Bischof JC 《Cryobiology》2008,57(2):79-83
There is a lack of information on the effect of cryoprotective agents (CPAs) on the thermal properties of biomaterials at cryobiologically relevant temperatures (i.e. <233.15 K, −40 °C). Thermal properties that are of most interest include: thermal conductivity, density, specific heat, and latent heat resulting from phase change in tissue systems. Availability of such information would be beneficial for accurate mathematical modeling of cryobiological applications. Recently, we reported these thermal properties in phosphate buffered saline (PBS) with varying concentrations of glycerol, a widely used cryoprotective agent. In this study we extend these results by assessing the effects of glycerol on the thermal properties of porcine liver at subzero temperatures. Differential scanning calorimeter (DSC) was used to measure the specific heat and the latent heat release of porcine liver immersed in PBS and varying concentrations of glycerol. The specific heat data obtained from the DSC experiments were also used to predict the bulk thermal conductivity. This was done using a transient heat transfer model with a thermistor probe technique. Results show that the introduction of glycerol significantly alters thermal properties from known values for H2O and non-treated liver. Therefore, inaccuracies in thermal predictions can be expected due to the application of measured vs. predicted thermal properties such as from weight averaging. This supports the need for these and other measurements of biomaterial thermal properties, with and without CPA addition, in the cryogenic regime.  相似文献   
48.
Ahsan N  Lee DG  Alam I  Kim PJ  Lee JJ  Ahn YO  Kwak SS  Lee IJ  Bahk JD  Kang KY  Renaut J  Komatsu S  Lee BH 《Proteomics》2008,8(17):3561-3576
While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.  相似文献   
49.
50.
To design artificial restriction enzymes, synthetic catalytic centers that effectively hydrolyze linear double-stranded polydeoxyribonucleotides are needed. The Co(III) complex of cyclen (CoCyc) attached to polystyrene derivatives hydrolyzes linearized pUC18 DNA with half-lives as short as 30 min at 25 degrees C. The catalytic activity of CoCyc is enhanced by >150 times on attachment to the resin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号