首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1108篇
  免费   85篇
  国内免费   5篇
  1198篇
  2023年   21篇
  2022年   23篇
  2021年   49篇
  2020年   28篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   36篇
  2015年   58篇
  2014年   61篇
  2013年   86篇
  2012年   89篇
  2011年   99篇
  2010年   53篇
  2009年   47篇
  2008年   59篇
  2007年   47篇
  2006年   30篇
  2005年   47篇
  2004年   40篇
  2003年   24篇
  2002年   39篇
  2001年   9篇
  2000年   10篇
  1999年   14篇
  1998年   13篇
  1997年   5篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1989年   5篇
  1988年   6篇
  1987年   11篇
  1986年   9篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1981年   6篇
  1979年   4篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1968年   5篇
  1963年   2篇
  1955年   2篇
排序方式: 共有1198条查询结果,搜索用时 17 毫秒
991.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   
992.
993.
994.
Very little data have been reported that describe the structure of the tail domain of any cytoplasmic intermediate filament (IF) protein. We report here the results of studies using site directed spin labeling and electron paramagnetic resonance (SDSL‐EPR) to explore the structure and dynamics of the tail domain of human vimentin in tetramers (protofilaments) and filaments. The data demonstrate that in contrast to the vimentin head and rod domains, the tail domains are not closely apposed in protofilaments. However, upon assembly into intact IFs, several sites, including positions 445, 446, 451, and 452, the conserved “beta‐site,” become closely apposed, indicating dynamic changes in tail domain structure that accompany filament elongation. No evidence is seen for coiled‐coil structure within the region studied, in either protofilaments or assembled filaments. EPR analysis also establishes that more than half of the tail domain is very flexible in both the assembly intermediate and the intact IF. However, by positioning the spin label at distinct sites, EPR is able to identify both the rod proximal region and sites flanking the beta‐site motif as rigid locations within the tail. The rod proximal region is well assembled at the tetramer stage with only slight changes occurring during filament elongation. In contrast, at the beta site, the polypeptide backbone transitions from flexible in the assembly intermediate to much more rigid in the intact IF. These data support a model in which the distal tail domain structure undergoes significant conformational change during filament elongation and final assembly.  相似文献   
995.
Cardiac myosin binding protein C (cMyBP-C) is an important regulator of cardiac contractility. Its precise effect on myosin cross-bridges (CBs) remains unclear. Using a cMyBP-C−/− mouse model, we determined how cMyBP-C modulates the cyclic interaction of CBs with actin. From papillary muscle mechanics, CB characteristics were provided using A. F. Huxley's equations. The probability of myosin being weakly bound to actin was higher in cMyBP-C−/− than in cMyBP-C+/+. However, the number of CBs in strongly bound, high-force generated state and the force generated per CB were lower in cMyBP-C−/−. Overall CB cycling and the velocity of CB tilting were accelerated in cMyBP-C−/−. Taking advantage of the presence of cMyBP-C in cMyBP-C+/+ myosin solution but not in cMyBP-C−/−, we also analyzed the effects of cMyBP-C on the myosin-based sliding velocity of actin filaments. At baseline, sliding velocity and the relative isometric CB force, as determined by the amount of α-actinin required to arrest thin filament motility, were lower in cMyBP-C−/− than in cMyBP-C+/+. cAMP-dependent protein kinase-mediated cMyBP-C phosphorylation further increased the force produced by CBs. We conclude that cMyBP-C prevents inefficient, weak binding of the myosin CB to actin and has a critical effect on the power-stroke step of the myosin molecular motor.  相似文献   
996.
The remarkable advance in sequencing technology and the rising interest in medical and environmental microbiology, biotechnology, and synthetic biology resulted in a deluge of published microbial genomes. Yet, genome annotation, comparison, and modeling remain a major bottleneck to the translation of sequence information into biological knowledge, hence computational analysis tools are continuously being developed for rapid genome annotation and interpretation. Among the earliest, most comprehensive resources for prokaryotic genome analysis, the SEED project, initiated in 2003 as an integration of genomic data and analysis tools, now contains >5,000 complete genomes, a constantly updated set of curated annotations embodied in a large and growing collection of encoded subsystems, a derived set of protein families, and hundreds of genome-scale metabolic models. Until recently, however, maintaining current copies of the SEED code and data at remote locations has been a pressing issue. To allow high-performance remote access to the SEED database, we developed the SEED Servers (http://www.theseed.org/servers): four network-based servers intended to expose the data in the underlying relational database, support basic annotation services, offer programmatic access to the capabilities of the RAST annotation server, and provide access to a growing collection of metabolic models that support flux balance analysis. The SEED servers offer open access to regularly updated data, the ability to annotate prokaryotic genomes, the ability to create metabolic reconstructions and detailed models of metabolism, and access to hundreds of existing metabolic models. This work offers and supports a framework upon which other groups can build independent research efforts. Large integrations of genomic data represent one of the major intellectual resources driving research in biology, and programmatic access to the SEED data will provide significant utility to a broad collection of potential users.  相似文献   
997.
Protease enzyme from Bacillus megaterium was successively purified by ammonium sulfate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-200. The purification steps of protease resulted in the production of two protease fractions namely protease P1 and P2 with specific activities of 561.27 and 317.23 U mg?1 of protein, respectively. The molecular weights of B. megaterium P1 and P2 were 28 and 25 KDa, respectively. The purified fractions P1 and P2 were rich in aspartic acid and serine. Relatively higher amounts of alanine, leucine, glycine, valine, thereonine valine and glutamic acid were also present. The maximum protease activities for both enzyme fractions were attained at 50 °C, pH 7.5, 1% of gelatine concentration and 0.5 enzyme concentrations. P1 and P2 fractions were more stable over pH 7.0–8.5 and able to prolong their thermal stability up to 80 °C. The effect of different inhibitors on the protease activity of both enzyme fractions was also studied. The enzyme was found to be serine active as it had been affected by lower concentrations of phenylmethylsulfonyl fluoride (PMSF). Complete dehairing of the enzyme-treated skin was achieved in 12 h, at room temperature.  相似文献   
998.
999.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is an intracellular enzyme possessing various immunosuppressive properties. Here, we report the possible use of this enzyme to suppress proliferation of immune cells cocultured with IDO-expressing fibroblasts of an allogenic skin substitute. Fetal skin fibroblasts embedded within bovine collagen were treated with cytokine interferon-gamma (IFN-gamma) to induce expression of IDO mRNA and protein. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by measurement of kynurenine and tryptophan levels in the IFN-gamma untreated and treated fibroblasts. The results of Northern analysis showed a dose-dependent increase in expression of IDO mRNA in response to various concentrations of IFN-gamma used. The levels of kynurenine and tryptophan measured, as the bioactivity of IDO, were significantly different in the IFN-gamma treated fibroblasts, compared to those of controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA was gradually reduced to an undetectable level within 32 h of IFN-gamma removal. The results of Western blot analysis, however, revealed a significantly longer (192 h) lasting effect of IFN-gamma on IDO protein level, relative to that of mRNA expression. To demonstrate immunosuppressive effects of IDO on proliferation of immune cells, IDO-expressing fibroblasts were cocultured with peripheral blood mononuclear cells (PBMC) for a period of 5 days. The results of (3)H-thymidine incorporation showed a significant reduction in proliferation of PBMC when cocultured with IDO-expressing fibroblasts, compared to those cocultured with non-IDO-expressing fibroblasts (P < 0.001). Furthermore, addition of IDO-inhibitor (1-methyl-d-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation in a dose-dependant fashion. To test the viability of immune cells cocultured with IDO-expressing fibroblasts, FACS analysis of the PI stained PBMC was conducted and no significant difference was found between these cells and the controls. In another set of experiments, we showed that migration rate and subsequent proliferation of IDO-expressing fibroblasts are also the same as those of control cells. In conclusion, IDO-expressing allogenic fibroblasts embedded within collagen gel suppress the proliferation of allogenic immune cells, while they still remain viable in this IDO-induced tryptophan-deficient culture environment.  相似文献   
1000.
The present study reports the convenient synthesis, spectroscopic characterization, bio‐assays and computational evaluation of a novel series of N‐acyl‐1H‐imidazole‐1‐carbothioamides. The screened derivatives displayed excellent antioxidant activity, moderate antibacterial and antifungal potential. The screened derivatives were found to be highly biocompatible against hRBCs. Molecular docking ascertained the mechanism and mode of action towards the molecular target delineating that ligands and complexes were stabilized at the active site by electrostatic and hydrophobic forces in accordance to the corresponding experimental results. Docking simulation provided additional information about the possibilities of inhibitory potential of the compounds against RNA. Computational evaluation predicted that N‐acyl‐1H‐imidazole‐1‐carbothioamides 5c and 5g can serve as potential surrogates for hit to lead generation and design of novel antioxidant and antibacterial agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号