首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6952篇
  免费   663篇
  国内免费   3篇
  7618篇
  2024年   10篇
  2023年   77篇
  2022年   146篇
  2021年   278篇
  2020年   156篇
  2019年   229篇
  2018年   185篇
  2017年   193篇
  2016年   297篇
  2015年   513篇
  2014年   558篇
  2013年   577篇
  2012年   735篇
  2011年   673篇
  2010年   375篇
  2009年   330篇
  2008年   419篇
  2007年   374篇
  2006年   318篇
  2005年   284篇
  2004年   241篇
  2003年   164篇
  2002年   147篇
  2001年   28篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   15篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   13篇
  1989年   6篇
  1988年   7篇
  1986年   6篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1977年   5篇
  1965年   5篇
  1957年   5篇
  1937年   4篇
  1936年   4篇
  1860年   4篇
排序方式: 共有7618条查询结果,搜索用时 15 毫秒
81.
In the context of cell biology, the term mesoscale describes length scales ranging from that of an individual cell, down to the size of the molecular machines. In this spatial regime, small building blocks self‐organise to form large, functional structures. A comprehensive set of rules governing mesoscale self‐organisation has not been established, making the prediction of many cell behaviours difficult, if not impossible. Our knowledge of mesoscale biology comes from experimental data, in particular, imaging. Here, we explore the application of soft X‐ray tomography (SXT) to imaging the mesoscale, and describe the structural insights this technology can generate. We also discuss how SXT imaging is complemented by the addition of correlative fluorescence data measured from the same cell. This combination of two discrete imaging modalities produces a 3D view of the cell that blends high‐resolution structural information with precise molecular localisation data.  相似文献   
82.
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ?, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.  相似文献   
83.
84.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
85.
86.
To attain Salmonella detection thresholds in spinach suspensions using enrichment media requires at least 24 hr. Separation and concentration of selected microorganisms via microfiltration and microfugation reduce time for sample preparation, especially when working with large volumes of vegetable suspensions. This facilitates accelerated detection of Salmonella in spinach suspensions, and may contribute to effectively monitoring this pathogen before it reaches the consumer. We report a microfiltration-based protocol for accelerated sample preparation to concentrate and recover ≤1 colony forming unit (CFU) Salmonella/g pathogen-free spinach. Store-bought samples of spinach and a spinach plant subjected to two environmental conditions (temperature and light exposure) during its production were tested. The overall procedure involves extraction with buffer, a short enrichment step, prefiltration using a nylon filter, crossflow hollow fiber microfiltration, and retentate centrifugation to bring microbial cells to detection levels. Based on 1 CFU Salmonella/g frozen spinach, and a Poisson distribution statistical analyses with 99% probability, we calculated that 3 hr of incubation, when followed by microfiltration, is sufficient to reach the 2 log concentration required for Salmonella detection within 7 hr. Longer enrichment times (5 hr or more) is needed for concentrations lower than 1 CFU Salmonella/g of ready to eat spinach. The recovered microbial cells were identified and confirmed as Salmonella using both polymerase chain reaction (PCR) and plating methods. Different environmental conditions tested during production did not affect Salmonella viability; this demonstrated the broad adaptability of Salmonella and emphasized the need for methods that enable efficient monitoring of production for the presence of this pathogen.  相似文献   
87.
88.
In dendritic river systems, gene flow is expected to occur primarily within watersheds. Yet, rare cross‐watershed transfers can also occur, whether mediated by (often historical) geological events or (often contemporary) human activities. We explored these events and their potential evolutionary consequences by analyzing patterns of neutral genetic variation (microsatellites) and adaptive phenotypic variation (male color) in wild guppies (Poecilia reticulata) distributed across two watersheds in northern Trinidad. We found the expected signatures of within‐watershed gene flow; yet we also inferred at least two instances of cross‐watershed gene flow—one in the upstream reaches and one further downstream. The upstream cross‐watershed event appears to be very recent (41 ± 13 years), suggesting dispersal via recent flooding or undocumented human‐mediated transport. The downstream cross‐watershed event appears to be considerably older (577 ± 265 years), suggesting a role for rare geological or climatological events. Alongside these strong signatures of both contemporary and historical gene flow, we found little evidence of impacts on presumably adaptive phenotypic differentiation, except perhaps in the one instance of very recent cross‐watershed gene flow. Selection in this system seems to overpower gene flow—at least on the spatiotemporal scales investigated here.  相似文献   
89.
90.
Dry forest bird communities in South America are often fragmented by intervening mountains and rainforests, generating high local endemism. The historical assembly of dry forest communities likely results from dynamic processes linked to numerous population histories among codistributed species. Nevertheless, species may diversify in the same way through time if landscape and environmental features, or species ecologies, similarly structure populations. Here we tested whether six co‐distributed taxon pairs that occur in the dry forests of the Tumbes and Marañón Valley of northwestern South America show concordant patterns and modes of diversification. We employed a genome reduction technique, double‐digest restriction site‐associated DNA sequencing, and obtained 4407–7186 genomewide SNPs. We estimated demographic history in each taxon pair and inferred that all pairs had the same best‐fit demographic model: isolation with asymmetric gene flow from the Tumbes into the Marañón Valley, suggesting a common diversification mode. Overall, we also observed congruence in effective population size (Ne) patterns where ancestral Ne were 2.9–11.0× larger than present‐day Marañón Valley populations and 0.3–2.0× larger than Tumbesian populations. Present‐day Marañón Valley Ne was smaller than Tumbes. In contrast, we found simultaneous population isolation due to a single event to be unlikely as taxon pairs diverged over an extended period of time (0.1–2.9 Ma) with multiple nonoverlapping divergence periods. Our results show that even when populations of codistributed species asynchronously diverge, the mode of their differentiation can remain conserved over millions of years. Divergence by allopatric isolation due to barrier formation does not explain the mode of differentiation between these two bird assemblages; rather, migration of individuals occurred before and after geographic isolation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号