首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6751篇
  免费   660篇
  国内免费   3篇
  7414篇
  2024年   9篇
  2023年   77篇
  2022年   148篇
  2021年   277篇
  2020年   156篇
  2019年   230篇
  2018年   181篇
  2017年   194篇
  2016年   298篇
  2015年   512篇
  2014年   558篇
  2013年   571篇
  2012年   730篇
  2011年   668篇
  2010年   372篇
  2009年   326篇
  2008年   414篇
  2007年   373篇
  2006年   320篇
  2005年   284篇
  2004年   243篇
  2003年   163篇
  2002年   141篇
  2001年   34篇
  2000年   12篇
  1999年   20篇
  1998年   10篇
  1997年   14篇
  1996年   5篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有7414条查询结果,搜索用时 14 毫秒
851.
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.  相似文献   
852.
BackgroundAs overall cancer survival continues to improve, the incidence of metastatic lesions to the bone continues to increase. The subsequent skeletal related events that can occur with osseous metastasis can be debilitating. Complete and impending pathologic femur fractures are common with patients often requiring operative fixation. However, the efficacy of an intramedullary nail construct, on providing stability, continue to be debated. Therefore, the purpose of this study was to utilize a synthetic femur model to determine 1) how proximal femur defect size and cortical breach impact femur load to failure (strength) and stiffness, and 2) and how the utilization of an IMN, in a prophylactic fashion, subsequently alters the overall strength and stiffness of the proximal femur.MethodsA total of 21 synthetic femur models were divided into four groups: 1) intact (no defect), 2) 2 cm defect, 3) 2.5 cm defect, and 4) 4 cm defect. An IMN was inserted in half of the femur specimens that had a defect present. This procedure was performed using standard antegrade technique. Specimens were mechanically tested in offset torsion. Force-displacement curves were utilized to determine each constructs load to failure and overall torsional stiffness. The ultimate load to failure and construct stiffness of the synthetic femurs with defects were compared to the intact synthetic femur, while the femurs with the placement of the IMN were directly compared to the synthetic femurs with matching defect size.ResultsThe size of the defect invertedly correlated with the load the failure and overall stiffness. There was no difference in load to failure or overall stiffness when comparing intact models with no defect and the 2 cm defect group (p=0.98, p=0.43). The 2.5 cm, and 4.5 cm defect groups demonstrated significant difference in both load to failure and overall stiffness when compared to intact models with results demonstrating 1313 N (95% CI: 874-1752 N; p<0.001) and 104 N/mm (95% CI: 98-110 N/mm; p=0.03) in the 2.5 cm defect models, and 512 N (95% CI: 390-634 N, p<0.001) and 21 N/mm (95% CI: 9-33 N/mm, p<0.001) in the models with a 4 cm defect. Compared to the groups with defects, the placement an IMN increased overall stiffness in the 2.5 cm defect group (125 N/mm; 95% CI:114-136 N/mm; p=0.003), but not load to failure (p=0.91). In the 4 cm defect group, there was a significant increase in load to failure (1067 N; 95% CI: 835-1300 N; p=0.002) and overall stiffness (57 N/mm; 95% CI:46-69 N/mm; p=0.001).ConclusionProphylactic IMN fixation significantly improved failure load and overall stiffness in the group with the largest cortical defects, but still demonstrated a failure loads less than 50% of the intact model. This investigation suggests that a cortical breach causes a loss of strength that is not completely restored by intramedullary fixation. Level of Evidence: II  相似文献   
853.
Phytochrome A (phyA) is the primary photoreceptor responsible for various far-red (FR) light-mediated responses. Previous studies have identified multiple phyA signaling mutants, including both positive and negative regulators of the phyA-mediated responses. How these defined intermediates act to mediate FR light responses is largely unknown. Here a cDNA microarray was used to examine effects of those mutations on the far-red light control of genome expression. Clustering analysis of the genome expression profiles supports the notion that phyA signaling may entail a network with multiple paths, controlling overlapping yet distinct sets of gene expression. FHY1, FAR1 and FHY3 most likely act upstream in the phyA signaling network, close to the phyA photoreceptor itself. FIN219, SPA1 and REP1 most likely act somewhere more downstream in the network and control the expression of smaller sets of genes. Further, this study also provides genomics evidence for the partial functional redundancy between FAR1 and FHY3. These two homologous proteins control the expression of a largely overlapping set of genes, and likely act closely together in the phyA-mediated FR light responses.  相似文献   
854.
An important goal in foraging ecology is to determine how biotic and abiotic variables impact the foraging decisions of wild animals and how they move throughout their multidimensional landscape. However, the interaction of food quality and feeding competition on foraging decisions is largely unknown. Here we examine the importance of food quality in a patch on the foraging decisions of wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda using a multidestination platform array. The overall nutritional composition of the vervet diet was assessed and found to be low in sodium and lipids, thus we conducted a series of experimental manipulations in which the array was varied in salt and oil content. Although vervets prioritized platforms containing key nutrients (i.e., sodium and lipids) overall, we found that solitary vervets prioritized nutrient‐dense platforms more strongly than competing vervets. This finding was opposite to those in a similar experiment that manipulated food site quantity, suggesting that large, salient rewards may be worth competing over but slight differences in nutritional density may be only chosen when there are no potentially negative social consequences (i.e., aggression received). We also found that vervets chose platforms baited with oil‐only, and oil combined with salt, but not salt‐only, suggesting that energy was an important factor in food choice. Our findings demonstrate that when wild vervets detect differences in feeding patches that reflect nutritional composition, they factor these differences into their navigational and foraging decisions. In addition, our findings suggest that these nutritional differences may be considered alongside social variables, ultimately leading to the complex strategies we observed in this study.  相似文献   
855.
It had been assumed that production of the cytotoxic polyketide mycolactone was strictly associated with Mycobacterium ulcerans, the causative agent of Buruli ulcer. However, a recent study has uncovered a broader distribution of mycolactone-producing mycobacteria (MPM) that includes mycobacteria cultured from diseased fish and frogs in the United States and from diseased fish in the Red and Mediterranean Seas. All of these mycobacteria contain versions of the M. ulcerans pMUM plasmid, produce mycolactones, and show a high degree of genetic relatedness to both M. ulcerans and Mycobacterium marinum. Here, we show by multiple genetic methods, including multilocus sequence analysis and DNA-DNA hybridization, that all MPM have evolved from a common M. marinum progenitor to form a genetically cohesive group among a more diverse assemblage of M. marinum strains. Like M. ulcerans, the fish and frog MPM show multiple copies of the insertion sequence IS2404. Comparisons of pMUM and chromosomal gene sequences demonstrate that plasmid acquisition and the subsequent ability to produce mycolactone were probably the key drivers of speciation. Ongoing evolution among MPM has since produced at least two genetically distinct ecotypes that can be broadly divided into those typically causing disease in ectotherms (but also having a high zoonotic potential) and those causing disease in endotherms, such as humans.  相似文献   
856.
We have shown previously that the Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors. The importance of Lyn to red cell maturation has been highlighted by Lyn-/- mice developing anemia. Here we show that Lyn interacts with C-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators C-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk). Lyn phosphorylated Cbp on several tyrosine residues, including Tyr314, which recruited Csk/Ctk to suppress Lyn kinase activity. Intriguingly, phosphorylated Tyr314 also bound suppressor of cytokine signaling 1 (SOCS1), another well characterized negative regulator of cell signaling, resulting in elevated ubiquitination, and degradation of Lyn. In Epo-responsive primary cells and cell lines, Lyn rapidly phosphorylated Cbp, suppressing Lyn kinase activity via Csk/Ctk within minutes of Epo stimulation; hours later, SOCS1 bound to Cbp and was involved in the ubiquitination and turnover of Lyn protein. Thus, a single phosphotyrosine residue on Cbp coordinates a two-phase process involving distinct negative regulatory pathways to inactivate, then degrade, Lyn.  相似文献   
857.
Neomorphic, membrane‐associated skeletal rods are found in disparate vertebrate lineages, but their evolution is poorly understood. Here we show that one of these elements—the calcar of bats (Chiroptera)—is a skeletal novelty that has anatomically diversified. Comparisons of evolutionary models of calcar length and corresponding disparity‐through‐time analyses indicate that the calcar diversified early in the evolutionary history of Chiroptera, as bats phylogenetically diversified after evolving the capacity for flight. This interspecific variation in calcar length and its relative proportion to tibia and forearm length is of functional relevance to flight‐related behaviors. We also find that the calcar varies in its tissue composition among bats, which might affect its response to mechanical loading. We confirm the presence of a synovial joint at the articulation between the calcar and the calcaneus in some species, which suggests the calcar has a kinematic functional role. Collectively, this functionally relevant variation suggests that adaptive advantages provided by the calcar led to its anatomical diversification. Our results demonstrate that novel skeletal additions can become integrated into vertebrate body plans and subsequently evolve into a variety of forms, potentially impacting clade diversification by expanding the available morphological space into which organisms can evolve.  相似文献   
858.
The human clade B serpins neutralize serine or cysteine proteinases and reside predominantly within the intracellular compartment. Genomic analysis shows that the 13 human clade B serpins map to either 6p25 (n = 3) or 18q21 (n = 10). Similarly, the mouse clade B serpins map to syntenic loci at 13A3.2 and 1D, respectively. The mouse clade B cluster at 13A3.2 shows a marked expansion in the number of serpin genes (n = 15). The purpose of this study was to determine whether a similar expansion occurred at 1D. Using STS-content mapping, comparative genomic DNA sequence analysis, and cDNA cloning, we found that the mouse clade B cluster at 1D showed nearly complete conservation of gene number, order, and orientation relative to those of 18q21. The only exception was the squamous cell carcinoma antigen (SCCA) locus. The human SCCA locus contains two genes, SERPINB3 (SCCA1) and SERPINB4 (SCCA2), whereas the mouse locus contains four serpins and three pseudogenes. Based on phylogenetic analysis and predicted amino acid sequences, amplification of the mouse SCCA locus occurred after rodents and primates diverged and was associated with some diversification of proteinase inhibitory activity relative to that of humans.  相似文献   
859.
860.
Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186–200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号