首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6930篇
  免费   685篇
  国内免费   3篇
  7618篇
  2024年   9篇
  2023年   77篇
  2022年   149篇
  2021年   278篇
  2020年   158篇
  2019年   228篇
  2018年   184篇
  2017年   192篇
  2016年   298篇
  2015年   517篇
  2014年   560篇
  2013年   576篇
  2012年   743篇
  2011年   678篇
  2010年   380篇
  2009年   333篇
  2008年   421篇
  2007年   377篇
  2006年   315篇
  2005年   288篇
  2004年   241篇
  2003年   172篇
  2002年   146篇
  2001年   35篇
  2000年   23篇
  1999年   28篇
  1998年   19篇
  1997年   17篇
  1996年   15篇
  1995年   8篇
  1994年   12篇
  1993年   7篇
  1992年   6篇
  1991年   15篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   11篇
  1982年   9篇
  1981年   3篇
  1980年   8篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1974年   6篇
  1970年   3篇
排序方式: 共有7618条查询结果,搜索用时 15 毫秒
141.
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.  相似文献   
142.
Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009–2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf ( 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness ( diversity) and diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal diversity across the depth gradient.  相似文献   
143.
The P2X7 receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X7 cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X7 agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X7 variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X7 receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X7 is critical for regulation of P2X7-mediated pore formation.  相似文献   
144.
Crystal structures of histidyl-tRNA synthetase (HisRS) from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme and reveal differences from bacterial homologs. HisRSs in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three-dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active-site rearrangement upon histidine binding but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme's first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human HisRSs. The essentiality of the single HisRS gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.  相似文献   
145.
146.
147.
Mammalian cell function requires timely and accurate transmission of information from the cell membrane (CM) to the nucleus (N). These pathways have been intensively investigated and many critical components and interactions have been identified. However, the physical forces that control movement of these proteins have received scant attention. Thus, transduction pathways are typically presented schematically with little regard to spatial constraints that might affect the underlying dynamics necessary for protein-protein interactions and molecular movement from the CM to the N. We propose messenger protein localization and movements are highly regulated and governed by Coulomb interactions between: 1. A recently discovered, radially directed E-field from the NM into the CM and 2. Net protein charge determined by its isoelectric point, phosphorylation state, and the cytosolic pH. These interactions, which are widely applied in elecrophoresis, provide a previously unknown mechanism for localization of messenger proteins within the cytoplasm as well as rapid shuttling between the CM and N. Here we show these dynamics optimize the speed, accuracy and efficiency of transduction pathways even allowing measurement of the location and timing of ligand binding at the CM--previously unknown components of intracellular information flow that are, nevertheless, likely necessary for detecting spatial gradients and temporal fluctuations in ligand concentrations within the environment. The model has been applied to the RAF-MEK-ERK pathway and scaffolding protein KSR1 using computer simulations and in-vitro experiments. The computer simulations predicted distinct distributions of phosphorylated and unphosphorylated components of this transduction pathway which were experimentally confirmed in normal breast epithelial cells (HMEC).  相似文献   
148.
We describe a 15‐year study of the loss of reproductive fitness and population decline in Adenostoma sparsifolium, a rosaceous shrub endemic in the fire‐prone chaparral vegetation of southern California (USA) and adjacent northern Baja California, Mexico. Our studies of background extinction concentrated on small relict populations occurring in the eastern Santa Monica Mountains where reproduction is genetically compromised by uniquely high rates of embryonic/endosperm abortion (97–99%) resulting largely from self‐pollination in highly heterozygous populations. Environmental factors further reduce reproductive fitness. The relatively few viable seeds produced are not well adapted to survive wildfires that are a regular (approximately 21 years) occurrence in chaparral. Seedling recruitment after burning is rare and any established seedlings ultimately die from the annual 4–9‐month summer droughts typical of Mediterranean climates. Adult mortality is manifest from wildfire (approximately 6%) and occasional multiple‐year droughts (approximately 15%). Given the virtual absence of new post‐fire reproduction and a low but persistent rate of adult mortality, slow population demise resulting in background extinction is inevitable. We posit that A. sparsifolium is ecologically ‘out of place’ in the present chaparral environment and appears best adapted to a moister climate with summer rains and few wildfires that prevailed before the increasing aridity and warming from mid‐Holocene to the present. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 269–292.  相似文献   
149.
Reduction of risk for human and food animal infection with Toxoplasma gondii is hampered by the lack of epidemiological data documenting the predominant routes of infection (oocyst vs. tissue cyst consumption) in horizontally transmitted toxoplasmosis. Existing serological assays can determine previous exposure to the parasite, but not the route of infection. We have used difference gel electrophoresis, in combination with tandem mass spectroscopy and Western blot, to identify a sporozoite-specific protein (T. gondii embryogenesis-related protein [TgERP]), which elicited antibody and differentiated oocyst- versus tissue cyst-induced infection in pigs and mice. The recombinant protein was selected from a cDNA library constructed from T. gondii sporozoites; this protein was used in Western blots and probed with sera from T. gondii -infected humans. Serum antibody to TgERP was detected in humans within 6-8 mo of initial oocyst-acquired infection. Of 163 individuals in the acute stage of infection (anti- T. gondii IgM detected in sera, or < 30 in the IgG avidity test), 103 (63.2%) had detectable antibodies that reacted with TgERP. Of 176 individuals with unknown infection route and in the chronic stage of infection (no anti- T. gondii IgM detected in sera, or > 30 in the IgG avidity test), antibody to TgERP was detected in 31 (17.6%). None of the 132 uninfected individuals tested had detectable antibody to TgERP. These data suggest that TgERP may be useful in detecting exposure to sporozoites in early T. gondii infection and implicates oocysts as the agent of infection.  相似文献   
150.
The placement of the root node in a phylogeny is fundamental to characterizing evolutionary relationships. The root node of bee phylogeny remains unclear despite considerable previous attention. In order to test alternative hypotheses for the location of the root node in bees, we used the F1 and F2 paralogs of elongation factor 1-alpha (EF-1α) to compare the tree topologies that result when using outgroup versus paralogous rooting. Fifty-two taxa representing each of the seven bee families were sequenced for both copies of EF-1α. Two datasets were analyzed. In the first (the "concatenated" dataset), the F1 and F2 copies for each species were concatenated and the tree was rooted using appropriate outgroups (sphecid and crabronid wasps). In the second dataset (the "duplicated" dataset), the F1 and F2 copies were aligned to each another and each copy for all taxa were treated as separate terminals. In this dataset, the root was placed between the F1 and F2 copies (e.g., paralog rooting). Bayesian analyses demonstrate that the outgroup rooting approach outperforms paralog rooting, recovering deeper clades and showing stronger support for groups well established by both morphological and other molecular data. Sequence characteristics of the two copies were compared at the amino acid level, but little evidence was found to suggest that one copy is more functionally conserved. Although neither approach yields an unambiguous root to the tree, both approaches strongly indicate that the root of bee phylogeny does not fall near Colletidae, as has been previously proposed. We discuss paralog rooting as a general strategy and why this approach performs relatively poorly with our particular dataset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号