首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7528篇
  免费   803篇
  国内免费   3篇
  2023年   78篇
  2022年   145篇
  2021年   282篇
  2020年   164篇
  2019年   232篇
  2018年   189篇
  2017年   195篇
  2016年   311篇
  2015年   522篇
  2014年   562篇
  2013年   592篇
  2012年   752篇
  2011年   706篇
  2010年   393篇
  2009年   352篇
  2008年   442篇
  2007年   400篇
  2006年   344篇
  2005年   310篇
  2004年   259篇
  2003年   175篇
  2002年   172篇
  2001年   52篇
  2000年   29篇
  1999年   44篇
  1998年   17篇
  1997年   24篇
  1995年   19篇
  1994年   15篇
  1992年   19篇
  1991年   21篇
  1990年   13篇
  1989年   26篇
  1988年   20篇
  1987年   24篇
  1986年   25篇
  1985年   17篇
  1983年   18篇
  1982年   20篇
  1981年   16篇
  1980年   22篇
  1979年   15篇
  1978年   20篇
  1977年   22篇
  1976年   14篇
  1975年   14篇
  1974年   13篇
  1973年   19篇
  1972年   17篇
  1971年   16篇
排序方式: 共有8334条查询结果,搜索用时 15 毫秒
901.
902.
The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.  相似文献   
903.
904.
A series of articles by W.J. Freeland published in the 1970s proposed that social organization and behavioral processes were heavily influenced by parasitic infections, which led to a number of intriguing hypotheses concerning how natural selection might act on social factors because of the benefits of avoiding parasite infections. For example, Freeland [1979] showed that all individuals within a given group harbored identical gastrointestinal protozoan faunas, which led him to postulate that social groups were akin to "biological islands" and suggest how this isolation could select specific types of ranging and dispersal patterns. Here, we reexamine the biological island hypothesis by quantifying the protozoan faunas of the same primate species examined by Freeland in the same location; our results do not support this hypothesis. In contrast, we quantified two general changes in protozoan parasite community of primates in the study area of Kibale National Park, Uganda, over the nearly 35 years between sample collections: (1) the colobines found free of parasites in the early 1970s are now infected with numerous intestinal protozoan parasites and (2) groups are no longer biological islands in terms of their protozoan parasites. Whatever the ultimate explanation for these changes, our findings have implications for studies proposing selective forces shaping primate behavior and social organization.  相似文献   
905.
Capuchin monkey behavior has been the focus of increasing numbers of captive and field studies in recent years, clarifying behavioral and ecological differences between the two morphological types: the gracile and the robust capuchins (also referred to as untufted and tufted). Studies have tended to focus on the gracile species Cebus capucinus (fewer data are available for C. albifrons, C. olivaceus, and C. kaapori) and on Cebus apella, a name that has encompassed all of the robust capuchins since the 1960s. As a result, it is difficult to ascertain the variation within either gracile or robust types. The phylogenetic relationships between gracile and robust capuchins have also, until now, remained obscure. Recent studies have suggested two independent Pliocene radiations of capuchins stemming from a common ancestor in the Late Miocene, about 6.2 millions of years ago (Ma). The present-day gracile capuchins most likely originated in the Amazon, and the robust capuchins in the Atlantic Forest to the southeast. Sympatry between the two types is explained by a recent expansion of robust capuchins into the Amazon (ca. 400,000 years ago). Morphological data also support a division of capuchins into the same two distinct groups, and we propose the division of capuchin monkeys into two genera, Sapajus Kerr, 1792, for robust capuchins and Cebus Erxleben, 1777, for gracile capuchins, based on a review of extensive morphological, genetic, behavioral, ecological, and biogeographic evidence.  相似文献   
906.
Despite being a common apex-level predator on coral reefs throughout the tropical Indo-Pacific, surprisingly little is known about whitetip reef shark (Triaenodon obesus) movements and biology. This study used photo-identification from community-contributed photographs to reveal patterns in movements, reproductive biology, and fisheries interactions in this species that have not been previously revealed through more traditional methods. At least 178 individual sharks were identified, and 26 movements were observed. These included movement distances of up to 26.4 km, movement rates of up to 3.27 km/day (9.8 km in 3 days), and movements that required the transit of a 140 m deep channel. Other animals showed high philopatry, being re-sighted at the same locality on multiple occasions (up to 13 sightings for one individual) over periods of up to 7 years. Females showed higher philopatry than males and were more likely than males to be found at shallow (<10 m depth) localities throughout the year. The proportion of male sightings at shallow localities was significantly higher in April and May than other months of the year, possibly due to males coming into the shallows to mate with females. A peak in sightings of late-term females followed by an abrupt decline suggests that pupping season is May into early June, and two females were observed pregnant in consecutive years despite evidence that the gestation period is approximately 1 year for this species. Nine percent of animals carried fishing tackle or exhibited jaw injuries associated with fishery interactions, with multiple individuals found dead after being hooked by fishers.  相似文献   
907.
Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. Humans are commonly exposed via inhalation of aerosolized bacteria derived from the waste products of domesticated sheep and goats, and particularly from products generated during parturition. However, many other species can be infected with C. burnetii, and the host range and full zoonotic potential of C. burnetii is unknown. Two cases of C. burnetii infection in marine mammal placenta have been reported, but it is not known if this infection is common in marine mammals. To address this issue, placenta samples were collected from Pacific harbor seals (Phoca vitulina richardsi), harbor porpoises (Phocoena phocoena), and Steller sea lions (Eumetopias jubatus). Coxiella burnetii was detected by polymerase chain reaction (PCR) in the placentas of Pacific harbor seals (17/27), harbor porpoises (2/6), and Steller sea lions (1/2) collected in the Pacific Northwest. A serosurvey of 215 Pacific harbor seals sampled in inland and outer coastal areas of the Pacific Northwest showed that 34.0% (73/215) had antibodies against either Phase 1 or Phase 2 C. burnetii. These results suggest that C. burnetii infection is common among marine mammals in this region.  相似文献   
908.
909.
The protein RpoS is responsible for mediating cell survival during the stationary phase by conferring cell resistance to various stressors and has been linked to biofilm formation. In this study, the role of the rpoS gene in Escherichia coli O157:H7 biofilm formation and survival in water was investigated. Confocal scanning laser microscopy of biofilms established on coverslips revealed a nutrient-dependent role of rpoS in biofilm formation, where the biofilm biomass volume of the rpoS mutant was 2.4- to 7.5-fold the size of its rpoS+ wild-type counterpart in minimal growth medium. The enhanced biofilm formation of the rpoS mutant did not, however, translate to increased survival in sterile double-distilled water (ddH2O), filter-sterilized lake water, or unfiltered lake water. The rpoS mutant had an overall reduction of 3.10 and 5.30 log10 in sterile ddH2O and filter-sterilized lake water, respectively, while only minor reductions of 0.53 and 0.61 log10 in viable counts were observed for the wild-type form in the two media over a 13-day period, respectively. However, the survival rates of the detached biofilm-derived rpoS+ and rpoS mutant cells were comparable. Under the competitive stress conditions of unfiltered lake water, the advantage conferred by the presence of rpoS was lost, and both the wild-type and knockout forms displayed similar declines in viable counts. These results suggest that rpoS does have an influence on both biofilm formation and survival of E. coli O157:H7 and that the advantage conferred by rpoS is contingent on the environmental conditions.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号