全文获取类型
收费全文 | 15886篇 |
免费 | 1525篇 |
国内免费 | 1002篇 |
专业分类
18413篇 |
出版年
2024年 | 30篇 |
2023年 | 147篇 |
2022年 | 335篇 |
2021年 | 620篇 |
2020年 | 429篇 |
2019年 | 596篇 |
2018年 | 561篇 |
2017年 | 496篇 |
2016年 | 694篇 |
2015年 | 1090篇 |
2014年 | 1223篇 |
2013年 | 1293篇 |
2012年 | 1573篇 |
2011年 | 1475篇 |
2010年 | 957篇 |
2009年 | 893篇 |
2008年 | 1005篇 |
2007年 | 904篇 |
2006年 | 753篇 |
2005年 | 690篇 |
2004年 | 572篇 |
2003年 | 491篇 |
2002年 | 444篇 |
2001年 | 235篇 |
2000年 | 144篇 |
1999年 | 130篇 |
1998年 | 97篇 |
1997年 | 87篇 |
1996年 | 52篇 |
1995年 | 49篇 |
1994年 | 50篇 |
1993年 | 37篇 |
1992年 | 52篇 |
1991年 | 36篇 |
1990年 | 23篇 |
1989年 | 31篇 |
1988年 | 24篇 |
1987年 | 15篇 |
1986年 | 16篇 |
1985年 | 17篇 |
1984年 | 7篇 |
1983年 | 10篇 |
1982年 | 10篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1977年 | 5篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1967年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Steinhour E Sherwani SI Mazerik JN Ciapala V O'Connor Butler E Cruff JP Magalang U Parthasarathy S Sen CK Marsh CB Kuppusamy P Parinandi NL 《Molecular and cellular biochemistry》2008,315(1-2):97-112
We have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A(2) (PLA(2)), another signaling phospholipase, and the modulation of PLD activation by PLA(2) in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA(2) in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations. The results revealed that vitamin C (3-10 mM) significantly activated PLA(2) starting at 30 min; however, the activation of PLD resulted only at 120 min of treatment of cells under identical conditions. Further studies were conducted utilizing specific pharmacological agents to understand the mechanism(s) of activation of PLA(2) and PLD in BLMVECs treated with vitamin C (5 mM) for 120 min. Antioxidants, calcium chelators, iron chelators, and PLA(2) inhibitors offered attenuation of the vitamin C-induced activation of both PLA(2) and PLD in the cells. Vitamin C was also observed to significantly induce the formation and release of the cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites and to activate the AA LOX in BLMVECs. The inhibitors of PLA(2), COX, and LOX were observed to effectively and significantly attenuate the vitamin C-induced PLD activation in BLMVECs. For the first time, the results of the present study revealed that the vitamin C-induced activation of PLD in vascular ECs was regulated by the upstream activation of PLA(2), COX, and LOX through the formation of AA metabolites involving oxidative stress, calcium, and iron. 相似文献
32.
33.
34.
35.
Moreland JG Davis AP Matsuda JJ Hook JS Bailey G Nauseef WM Lamb FS 《The Journal of biological chemistry》2007,282(47):33958-33967
Several soluble mediators, including endotoxin, prime neutrophils for an enhanced respiratory burst in response to subsequent stimulation. Priming of neutrophils occurs in vitro, and primed neutrophils are found in vivo. We previously localized the anion transporter ClC-3 to polymorphonuclear leukocytes (PMN) secretory vesicles and demonstrated that it is required for normal NADPH oxidase activation in response to both particulate and soluble stimuli. We now explore the contribution of the NADPH oxidase and ClC-3 to endotoxin-mediated priming. Lipooligosaccharide (LOS) from Neisseria meningitidis enhances the respiratory burst in response to formyl-Met-Leu-Phe, an effect that was impaired in PMNs lacking functional ClC-3 and under anaerobic conditions. Mobilization of receptors to the cell surface and phosphorylation of p38 MAPK by LOS were both impaired in PMN with the NADPH oxidase chemically inhibited or genetically absent and in cells lacking functional ClC-3. Furthermore, inhibition of the NADPH oxidase or ClC-3 in otherwise unstimulated cells elicited a phenotype similar to that seen after endotoxin priming, suggesting that basal oxidant production helps to maintain cellular quiescence. In summary, NADPH oxidase activation was required for LOS-mediated priming, but basal oxidants kept unstimulated cells from becoming primed. ClC-3 contributes to both of these processes. 相似文献
36.
瑞丽莫里热带雨林种子植物区系的初步研究 总被引:1,自引:0,他引:1
初步分析了鲜为人知的滇西南瑞丽莫里的热带雨林植物区系组成与地理成分。该植物区系中热带和主产热带的科占总科数的80%以上,热带分布属占总属数的84.1%;典型热带分布种占总种数的82.1%,该区系在科、属和种水平上均以热带成分占优势,明显属于热带性质的植物区系。在其热带分布属中,又以热带亚洲分布属最多,占总属数的26.5%;典型热带分布种中也以热带亚洲分布及其变型的种占绝对优势,占总种数的72.9%,反映了该植物区系具有热带亚洲植物区系的性质特点。在其热带亚洲成分中,又具体以南亚—大陆东南亚成分比例最高,反映了滇西南的热带雨林植物区系由于地域邻接关系,受印度(喜马拉雅)—缅甸植物区系的强烈影响。 相似文献
37.
Ying‐Ying Wang Bao‐Hua Hou Jin‐Zhi Guo Qiu‐Li Ning Wei‐Lin Pang Jiawei Wang Chang‐Li Lü Xing‐Long Wu 《Liver Transplantation》2018,8(18)
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications. 相似文献
38.
谷胱甘肽参与动植物体内的各种代谢活动,起着重要的作用。谷胱甘肽的测定方法有多种,如碘量法、纸层析法、高效液相色谱法等,但目前为止还没有一种快速、简便、准确、经济的方法。本文就谷胱甘肽的测定方法进展进行了简要概述。 相似文献
39.
Huachen Gan Guibo Wang Qin Hao Q. Jane Wang Hua Tang 《The Journal of biological chemistry》2013,288(52):37343-37354
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions. 相似文献
40.