首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6677篇
  免费   650篇
  国内免费   3篇
  7330篇
  2024年   9篇
  2023年   77篇
  2022年   146篇
  2021年   277篇
  2020年   157篇
  2019年   227篇
  2018年   183篇
  2017年   190篇
  2016年   299篇
  2015年   514篇
  2014年   557篇
  2013年   568篇
  2012年   728篇
  2011年   666篇
  2010年   371篇
  2009年   325篇
  2008年   412篇
  2007年   371篇
  2006年   309篇
  2005年   280篇
  2004年   237篇
  2003年   156篇
  2002年   140篇
  2001年   27篇
  2000年   10篇
  1999年   17篇
  1998年   10篇
  1997年   13篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有7330条查询结果,搜索用时 15 毫秒
991.
Polymorphonuclear leukocytes undergo directed movement to sites of infection, a complex process known as chemotaxis. Extension of the polymorphonuclear leukocyte (PMN) leading edge toward a chemoattractant in association with uropod retraction must involve a coordinated increase/decrease in membrane, redistribution of cell volume, or both. Deficits in PMN phagocytosis and trans-endothelial migration, both highly motile PMN functions, suggested that the anion transporters, ClC-3 and ICl(swell), are involved in cell motility and shape change ( Moreland, J. G., Davis, A. P., Bailey, G., Nauseef, W. M., and Lamb, F. S. (2006) J. Biol. Chem. 281, 12277-12288 ). We hypothesized that ClC-3 and ICl(swell) are required for normal PMN chemotaxis through regulation of cell volume and shape change. Using complementary chemotaxis assays, EZ-TAXIScantrade mark and dynamic imaging analysis software, we analyzed the directed cell movement and morphology of PMNs lacking normal anion transporter function. Murine Clcn3(-/-) PMNs and human PMNs treated with anion transporter inhibitors demonstrated impaired chemotaxis in response to formyl peptide. This included decreased cell velocity and failure to undergo normal cycles of elongation and retraction. Impaired chemotaxis was not due to a diminished number of formyl peptide receptors in either murine or human PMNs, as measured by flow cytometry. Murine Clcn3(-/-) and Clcn3(+/+) PMNs demonstrated a similar regulatory volume decrease, indicating that the ICl(swell) response to hypotonic challenge was intact in these cells. We further demonstrated that ICl(swell) is essential for shape change during human PMN chemotaxis. We speculate that ClC-3 and ICl(swell) have unique roles in regulation of PMN chemotaxis; ICl(swell) through direct effects on PMN volume and ClC-3 through regulation of ICl(swell).  相似文献   
992.
Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2   总被引:1,自引:0,他引:1  
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of malignant cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As(2)O(3) induces phosphorylation/activation of the MAPK signal-integrating kinases (Mnks) 1 and 2 in leukemia cell lines. Such activation is defective in cells with targeted disruption of the p38alpha MAPK gene, indicating that it requires upstream engagement of the p38 MAPK pathway. Studies using Mnk1(-/-) or Mnk2(-/-), or double Mnk1(-/-)Mnk2(-/-) knock-out cells, establish that activation of Mnk1 and Mnk2 by arsenic trioxide regulates downstream phosphorylation of the eukaryotic initiation factor 4E at Ser-209. Importantly, arsenic-induced apoptosis is enhanced in cells with targeted disruption of the Mnk1 and/or Mnk2 genes, suggesting that these kinases are activated in a negative-feedback regulatory manner, to control generation of arsenic trioxide responses. Consistent with this, pharmacological inhibition of Mnk activity enhances the suppressive effects of arsenic trioxide on primary leukemic progenitors from patients with acute leukemias. Taken together, these findings indicate an important role for Mnk kinases, acting as negative regulators for signals that control generation of arsenic trioxide-dependent apoptosis and antileukemic responses.  相似文献   
993.
We have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A(2) (PLA(2)), another signaling phospholipase, and the modulation of PLD activation by PLA(2) in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA(2) in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations. The results revealed that vitamin C (3-10 mM) significantly activated PLA(2) starting at 30 min; however, the activation of PLD resulted only at 120 min of treatment of cells under identical conditions. Further studies were conducted utilizing specific pharmacological agents to understand the mechanism(s) of activation of PLA(2) and PLD in BLMVECs treated with vitamin C (5 mM) for 120 min. Antioxidants, calcium chelators, iron chelators, and PLA(2) inhibitors offered attenuation of the vitamin C-induced activation of both PLA(2) and PLD in the cells. Vitamin C was also observed to significantly induce the formation and release of the cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites and to activate the AA LOX in BLMVECs. The inhibitors of PLA(2), COX, and LOX were observed to effectively and significantly attenuate the vitamin C-induced PLD activation in BLMVECs. For the first time, the results of the present study revealed that the vitamin C-induced activation of PLD in vascular ECs was regulated by the upstream activation of PLA(2), COX, and LOX through the formation of AA metabolites involving oxidative stress, calcium, and iron.  相似文献   
994.
995.
One-third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1-diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1-diphosphate species. (32)P-labelled lipid A obtained from lpxT mutants do not produce lipid A 1-diphosphate. In vitro assays with Kdo(2)-[4'-(32)P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1-diphosphate formation in wild-type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT-catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan.  相似文献   
996.
997.
For the larvae of two echinoderm species that coexist in Atlantic Canada (bipinnaria of the sea star Asterias rubens and 4- and 6-arm echinoplutei of the sea urchin Strongylocentrotus droebachiensis), we examined the effect of short- and long-term exposure to salinity (ranging from 18 to 35) on the probability of larval survival in laboratory experiments. We also related larval vertical distributions in response to sharp haloclines generated in the laboratory to survival probability in the salinity of different layers in the water column. For both species and developmental stages, survival probability decreased with decreasing salinity, and a salinity range of 24-27 emerged as the critical threshold for larval tolerance. The relationship between the proportion of larvae that crossed a halocline into the top water layer and the survival probability of larvae in the salinity of that layer was significant for both species. Interestingly, the shape of this response was species-specific but not stage-specific for S. droebachiensis. Our findings suggest that larval avoidance of low-salinity water layers may be an adaptive behavior that increases survival and indirectly influences larval distribution.  相似文献   
998.
Medroxyprogesterone acetate (MPA) is widely known for its use in combination hormone therapy for postmenopausal women. However, MPA is also commonly used in young women for contraception and treatment of a number of gynecological conditions. Despite its widespread use, the cardiovascular effects of MPA in young women are unclear. Therefore, the purpose of this study was to determine the acute effects of MPA when used in combination with estradiol on markers of cardiovascular risk in young women. We suppressed endogenous estrogens and progesterone in 10 premenopausal women using a gonadotropin-releasing hormone antagonist (GnRHa) for 10 days. On day 4 of GnRHa subjects received 0.1 mg of estradiol (GnRHa+E(2)), and on day 7 5 mg of MPA was added (GnRHa+E(2)+MPA). Endothelium-dependent vasodilation and endothelium-independent vasodilation of the brachial artery, lipids, homocysteine, high-sensitivity C-reactive protein, and endothelin-1 were assessed during treatment with GnRHa, GnRHa+E(2), and GnRHa+E(2)+MPA. Four additional subjects were tested to validate the efficacy of the GnRHa model and confirm the findings. Endothelium-dependent vasodilation was greater during GnRHa+E(2) than during GnRHa or GnRHa+E(2)+MPA (P = 0.006). Endothelin-1 was lower during GnRHa+E(2) than GnRHa alone (P = 0.039). Endothelin-1 increased with the addition of MPA and was not significantly different from GnRHa alone. There were no differences in the other markers of cardiovascular risk between hormone treatment days. These data suggest that acute MPA administration negates the beneficial effects of estradiol on endothelium-dependent vasodilation in young women. In addition, these data suggest that estradiol decreases endothelin-1 concentrations and the addition of MPA may counteract the effect of estradiol on endothelin-1.  相似文献   
999.
Deciduous lower premolars (milk teeth) of the Eocene artiodactyl family Cebochoeridae possess accessory denticles and are remarkably similar to both deciduous and adult teeth of the cetacean family Basilosauridae, suggesting that morphological characters of juvenile dentitions are important to understanding the phylogenetic origin of whales and morphological transitions in the cetartiodactyl lineage. Incorporation of these new characters into a larger phylogenetic analysis of morphological characters of artiodactyls, mesonychids, and basal and recent whales supports a monophyletic Cetartiodactyla, but does not directly support a whale–hippo relationship. However, the presence of accessory denticles on some artiodactyl dentitions weakens the morphological support for a monophyletic Artiodactyla, suggesting either that whales and cebochoerids may be more closely related than had been thought, or that cebochoerids share a developmental pathway with cetaceans.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号