首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14538篇
  免费   1401篇
  国内免费   10篇
  2023年   93篇
  2022年   198篇
  2021年   393篇
  2020年   221篇
  2019年   316篇
  2018年   299篇
  2017年   300篇
  2016年   470篇
  2015年   813篇
  2014年   897篇
  2013年   1003篇
  2012年   1248篇
  2011年   1205篇
  2010年   750篇
  2009年   680篇
  2008年   882篇
  2007年   854篇
  2006年   747篇
  2005年   697篇
  2004年   663篇
  2003年   544篇
  2002年   528篇
  2001年   109篇
  2000年   70篇
  1999年   115篇
  1998年   144篇
  1997年   95篇
  1996年   88篇
  1995年   81篇
  1994年   85篇
  1993年   76篇
  1992年   58篇
  1991年   64篇
  1990年   74篇
  1989年   54篇
  1988年   58篇
  1987年   58篇
  1986年   42篇
  1985年   64篇
  1984年   63篇
  1983年   61篇
  1982年   65篇
  1981年   61篇
  1980年   62篇
  1979年   48篇
  1978年   42篇
  1977年   45篇
  1976年   50篇
  1974年   38篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   
962.
Genomic integrity is maintained by checkpoints that guard against undesired replication after DNA damage. Here, we show that CDT1, a licensing factor of the pre-replication complex (preRC), is rapidly proteolysed after UV- or gamma-irradiation. The preRC assembles on replication origins at the end of mitosis and during G1 to license DNA for replication in S phase. Once the origin recognition complex (ORC) binds to origins, CDC6 and CDT1 associate with ORC and promote loading of the MCM2-7 proteins onto chromatin, generating the preRC. We show that radiation-mediated CDT1 proteolysis is independent of ATM and CHK2 and can occur in G1-phase cells. Loss of the COP9-signalosome (CSN) or CUL4-ROC1 complexes completely suppresses CDT1 proteolysis. CDT1 is specifically polyubiquitinated by CUL4 complexes and the interaction between CDT1 and CUL4 is regulated in part by gamma-irradiation. Our study reveals an evolutionarily conserved and uncharacterized G1 checkpoint that induces CDT1 proteolysis by the CUL4-ROC1 ubiquitin E3 ligase and CSN complexes in response to DNA damage.  相似文献   
963.
Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ), which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL) of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.  相似文献   
964.
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease of premature infants. Along with pathological effects in the ileum, severe NEC is often accompanied by multisystem organ failure, including liver failure. The aim of this study was to determine the changes in hepatic cytokines and inflammatory mediators in experimental NEC. The well-established neonatal rat model of NEC was used in this study, and changes in liver morphology, numbers of Kupffer cells (KC), gene expression, and histological localization of IL-18, TNF-alpha, and inducible nitric oxide synthase were evaluated. Intestinal luminal TNF-alpha levels were also measured. Production of hepatic IL-18 and TNF-alpha and numbers of KC were increased in rats with NEC and correlated with the progression of intestinal damage during NEC development. Furthermore, increased levels of TNF-alpha in the intestinal lumen of rats with NEC was significantly decreased when KC were inhibited with gadolinium chloride. These results suggest an important role of the liver and the gut-liver axis in NEC pathogenesis.  相似文献   
965.
Within the vascular system, the mucin-type transmembrane glycoprotein T1alpha/podoplanin is predominantly expressed by lymphatic endothelium, and recent studies have shown that it is regulated by the lymphatic-specific homeobox gene Prox1. In this study, we examined the role of T1alpha/podoplanin in vascular development and the effects of gene disruption in mice. T1alpha/podoplanin is first expressed at around E11.0 in Prox1-positive lymphatic progenitor cells, with predominant localization in the luminal plasma membrane of lymphatic endothelial cells during later development. T1alpha/podoplanin(-/-) mice die at birth due to respiratory failure and have defects in lymphatic, but not blood vessel pattern formation. These defects are associated with diminished lymphatic transport, congenital lymphedema and dilation of lymphatic vessels. T1alpha/podoplanin is also expressed in the basal epidermis of newborn wild-type mice, but gene disruption did not alter epidermal differentiation. Studies in cultured endothelial cells indicate that T1alpha/podoplanin promotes cell adhesion, migration and tube formation, whereas small interfering RNA-mediated inhibition of T1alpha/podoplanin expression decreased lymphatic endothelial cell adhesion. These data identify T1alpha/podoplanin as a novel critical player that regulates different key aspects of lymphatic vasculature formation.  相似文献   
966.
967.
Plants belonging to the genus Salsola (Family: Chenopodiaceae) are common in the arid and semiarid regions of our planet with no less than 69 different Salsola species found in Namibia and the Republic of South Africa. This genus is used as a traditional medicine and aqueous extracts of Salsola have been used by Bushmen women as an oral contraceptive. Ingestion of the Namibian shrub Salsola tuberculatiformis Botsch. by pregnant Karakul sheep leads to prolonged gestation and fetal post-maturity and, as a result, the pelts of the new-born karakul lambs are worthless. This initiated an investigation into the active agents in the plant, using the terminal enzyme in adrenal corticosteroidogenesis, cytochrome P450-dependent 11beta-hydroxylase (P450c11), as a bioassay. Although the active fraction, S2, was extremely labile, partial structure determination suggested the presence of synephrine and a highly reactive aziridine. Therefore a more stable analogue, 2-(4-acetoxyphenyl)2-chloro-N-methylethylammonium-chloride (compound A), was synthesised, which, like the active plant extracts, inhibited adrenal steroidogenesis and acted as a contraceptive. In addition, compound A was stabilised by interaction with steroid-binding globulins in plasma thus enhancing biological activity in vivo. These findings provided explanations for the complex biological effects of the shrub as well as a new insight into the mode of action of chemically labile plant products in vivo.  相似文献   
968.
969.
Several genetic and transgenic mouse models are currently being used for studying the regulation of myocardial contractility under normal conditions and in disease states. Little information has been provided, however, about myocardial energy metabolism in mouse hearts. We measured glycolysis, glucose oxidation and palmitate oxidation (using 3H-glucose, 14C-glucose and 3H-palmitate) in isolated working mouse hearts during normoxic conditions (control group) and following a 15 min global no-flow ischemic period (reperfusion group). Fifty min following reperfusion (10 min Langendorff perfusion + 40 min working heart perfusion) aortic flow, coronary flow, cardiac output, peak systolic pressure and heart rate were 44 ± 4, 88 ± 4, 57 ± 4, 94 ± 2 and 81 ± 4% of pre-ischemic values. Rates of glycolysis and glucose oxidation in the reperfusion group (13.6 ± 0.8 and 2.8 ± 0.2 mol/min/g dry wt) were not different from the control group (12.3 ± 0.6 and 2.5 ± 0.2 mol/min/g dry wt). Palmitate oxidation, however, was markedly elevated in the reperfusion group as compared to the control group (576 ± 37 vs. 357 ± 21 nmol/min/g dry wt, p < 0.05). This change in myocardial substrate utilization was accompanied by a marked fall in cardiac efficiency measured as cardiac output/oxidative ATP production (136 ± 10 vs. 54 ± 5 ml/mol ATP, p < 0.05, control and reperfusion group, respectively). We conclude that ischemia-reperfusion in isolated working mouse hearts is associated with a shift in myocardial substrate utilization in favour of fatty acids, in line with previous observations in rat.  相似文献   
970.
Adult T-cell leukemia (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) are associated with Human T-cell lymphotropic virus type 1 (HTLV-1) infection. The viral transactivator, Tax is able to mediate the cell cycle progression by targeting key regulators of the cell cycle such as p21/waf1, p16/ink4a, p53, cyclins D1-3/cdk complexes, and the mitotic spindle checkpoint MAD apparatus, thereby deregulating cellular DNA damage and checkpoint control. Genome expression profiling of infected cells exemplified by the development of DNA microarrays represents a major advance in genome-wide functional analysis. Utilizing cDNA microarray analysis, we have observed an apparent opposing and paradoxical regulatory network of host cell gene expression upon the introduction of DNA damage stress signal. We find the apparent induction of cell cycle inhibitors, and pro- as well as anti-apoptotic gene expression is directly linked to whether cells are at either G1, S, or G2/M phases of the cell cycle. Specifically, a G1/S block is induced by p21/waf1 and p16/ink4a, while pro-apoptotic expression at S, and G2/M is associated with caspase activation, and anti-apoptotic gene expression is associated with up regulation of Bcl-2 family member, namely bfl-1 gene. Therefore, the microarray results indicating expression of both pro- and anti-apoptotic genes could easily be explained by the particular stage of the cell cycle. Mechanism and the functional outcome of induction for both pathways are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号