首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1579篇
  免费   155篇
  国内免费   2篇
  2023年   12篇
  2022年   35篇
  2021年   68篇
  2020年   31篇
  2019年   36篇
  2018年   50篇
  2017年   43篇
  2016年   59篇
  2015年   94篇
  2014年   106篇
  2013年   116篇
  2012年   155篇
  2011年   144篇
  2010年   91篇
  2009年   76篇
  2008年   83篇
  2007年   82篇
  2006年   70篇
  2005年   69篇
  2004年   53篇
  2003年   41篇
  2002年   43篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   13篇
  1997年   9篇
  1994年   6篇
  1993年   3篇
  1992年   8篇
  1991年   3篇
  1988年   5篇
  1987年   7篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1965年   3篇
  1964年   5篇
  1961年   5篇
  1960年   7篇
  1902年   2篇
  1899年   2篇
排序方式: 共有1736条查询结果,搜索用时 928 毫秒
121.
As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations.  相似文献   
122.
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18)F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18)F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.  相似文献   
123.
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?  相似文献   
124.
Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700–6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.  相似文献   
125.
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure.  相似文献   
126.
The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ~4-6 μm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle.  相似文献   
127.

Background

Responding to errors is a critical first step in learning from mistakes, a process that is abnormal in schizophrenia. To gain insight into the neural and molecular mechanisms of error processing, we used functional MRI to examine effects of a genetic variant in methylenetetrahydrofolate reductase (MTHFR 677C>T, rs1801133) that increases risk for schizophrenia and that has been specifically associated with increased perseverative errors among patients. MTHFR is a key regulator of the intracellular one-carbon milieu, including DNA methylation, and each copy of the 677T allele reduces MTHFR activity by 35%.

Methodology/Principal Findings

Using an antisaccade paradigm, we found that the 677T allele induces a dose-dependent blunting of dorsal anterior cingulate cortex (dACC) activation in response to errors, a pattern that was identical in healthy individuals and patients with schizophrenia. Further, the normal relationship between dACC activation and error rate was disrupted among carriers of the 677T allele.

Conclusions/Significance

These findings implicate an epigenetic mechanism in the neural response to errors, and provide insight into normal cognitive variation through a schizophrenia risk gene.  相似文献   
128.
129.
Inoculation of 3-day-old (3D) or 3-week-old (3W) ducklings with duck hepatitis B virus results in chronic or transient infection, respectively. We previously showed that rapid production of neutralizing antibody following inoculation of 3W ducklings prevents virus from spreading in the liver and leads to a transient infection (Y.-Y. Zhang and J. Summers, J. Virol. 78:1195-1201, 2004). In this study we further investigated early events of viral infection in both 3D and 3W ducks. We present evidence that a lower level of virus replication in the hepatocytes of 3W birds is an additional factor that probably favors transient infection. We suggest that lower virus replication is due to a less rapid covalently closed circular DNA amplification, leading to lower viremias and a slower spread of infection in the liver, and that the slower spread of infection in 3W ducks makes the infection more sensitive to interruption by the host immune responses.  相似文献   
130.
The avian sarcoma/leukosis virus (ASLV) is activated for fusion by a two-step mechanism. For ASLV subgroup A (ASLV-A), association with its receptor (Tva) at neutral pH converts virions to a form that can bind target membranes and, in some assays, induce the lipid-mixing stage of fusion. Low pH is necessary to complete the fusion reaction. ASLV-A env (EnvA) exists on the viral surface as a trimer of heterodimers consisting of receptor binding (SU-A) and fusion-mediating (TM-A) subunits. As the receptor binding and fusion-mediating functions reside in separate subunits, we hypothesize that SU-A and TM-A are conformationally coupled. To begin to understand the effect of the binding of a soluble 47-residue domain of the receptor (sTva) on this coupling and the subsequent function of low pH, we prepared recombinant proteins representing full-length SU-A and a nested set of deletion mutant proteins. Full-length SU-A binds sTva with high affinity, but even small deletions at either the N or the C terminus severely impair sTva binding. We have purified the full-length SU-A subunit and characterized its interactions with sTva and the subsequent effect of low pH on the complex. sTva binds SU-A with an apparent KD of 3 pM. Complex formation occludes hydrophobic surfaces and tryptophan residues and leads to a partial loss of alpha-helical structure in SU-A. Low pH does not alter the off rate for the complex, further alter the secondary structure of SU-A, or induce measurable changes in tryptophan environment. The implications of these findings for fusion are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号