首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1550篇
  免费   153篇
  国内免费   2篇
  2023年   12篇
  2022年   35篇
  2021年   68篇
  2020年   31篇
  2019年   35篇
  2018年   50篇
  2017年   43篇
  2016年   58篇
  2015年   95篇
  2014年   105篇
  2013年   113篇
  2012年   152篇
  2011年   141篇
  2010年   88篇
  2009年   76篇
  2008年   82篇
  2007年   80篇
  2006年   70篇
  2005年   68篇
  2004年   52篇
  2003年   40篇
  2002年   43篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   13篇
  1997年   9篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1988年   5篇
  1987年   6篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1965年   3篇
  1964年   5篇
  1961年   4篇
  1960年   6篇
  1930年   2篇
  1902年   2篇
  1899年   2篇
排序方式: 共有1705条查询结果,搜索用时 380 毫秒
101.
102.
We demonstrated previously that the paraoxonase (PON1/2/3) genes and proteins are expressed in human intestinal biopsies and in Caco-2 cells. The current study aims were to explore whether PON1/2/3 expression is different in inflammatory bowel diseases (IBD) or celiac disease compared to healthy controls, and to explore the intracellular localization of PON1/2/3. Our results showed that significantly fewer biopsies expressed PON1 and PON3 in the duodenum of celiac patients (PON1, P<0.0001; PON3, P=0.03), in the terminal ileum of Crohn's patients (PON1, P=0.001; PON3, P=0.008), and in the colon of UC patients (PON1, P=0.02; PON3, P=0.06) compared to controls. Since all three disorders share markedly elevated inflammatory mediators we explored the PON1/2/3 mRNA expression on cytokine stimulation. No changes were observed in Caco-2 and HT29 cells. Immunofluorescence experiments localized PON1/2/3 exclusively to the endoplasmic reticulum (ER) in both CaCo-2 and HT29 cells. These results demonstrate for the first time a novel relationship between PON1 and PON3 expression and several inflammatory gastrointestinal disorders. Together with the localization of PON1/2/3 enzymes to the ER, it may be suggested that PON1/2/3 may have extracellular functions as part of the host response in IBD and celiac disease.  相似文献   
103.
104.
Aminoacyl‐phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala‐PG and a novel alanylated lipid, Alanyl‐diacylglycerol (Ala‐DAG). Ala‐DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala‐PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.  相似文献   
105.
106.
107.
108.
Tethering factors regulate the targeting of membrane‐enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.   相似文献   
109.
Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0582-8) contains supplementary material, which is available to authorized users.  相似文献   
110.

Background

One of the reasons hard red winter wheat cultivar ‘Duster’ (PI 644016) is widely grown in the southern Great Plains is that it confers a consistently high level of resistance to biotype GP of Hessian fly (Hf). However, little is known about the genetic mechanism underlying Hf resistance in Duster. This study aimed to unravel complex structures of the Hf region on chromosome 1AS in wheat by using genotyping-by-sequencing (GBS) markers and single nucleotide polymorphism (SNP) markers.

Results

Doubled haploid (DH) lines generated from a cross between two winter wheat cultivars, ‘Duster’ and ‘Billings’ , were used to identify genes in Duster responsible for effective and consistent resistance to Hf. Segregation in reaction of the 282 DH lines to Hf biotype GP fit a one-gene model. The DH population was genotyped using 2,358 markers developed using the GBS approach. A major QTL, explaining 88% of the total phenotypic variation, was mapped to a chromosome region that spanned 178 cM and contained 205 GBS markers plus 1 SSR marker and 1 gene marker, with 0.86 cM per marker in genetic distance. The analyses of GBS marker sequences and further mapping of SSR and gene markers enabled location of the QTL-containing linkage group on the short arm of chromosome 1A. Comparative mapping of the common markers for the gene for QHf.osu-1Ad in Duster and the Hf-resistance gene for QHf.osu-1A74 in cultivar ‘2174’ showed that the two Hf resistance genes are located on the same chromosome arm 1AS, only 11.2 cM apart in genetic distance. The gene at QHf.osu-1Ad in Duster has been delimited within a 2.7 cM region.

Conclusion

Two distinct resistance genes exist on the short arm of chromosome 1A as found in the two hard red winter cultivars, 2174 and Duster. Whereas the Hf resistance gene in 2174 is likely allelic to one or more of the previously mapped resistance genes (H9, H10, H11, H16, or H17) in wheat, the gene in Duster is novel and confers a more consistent phenotype than 2174 in response to biotype GP infestation in controlled-environment assays.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1297-7) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号