首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3638篇
  免费   374篇
  国内免费   11篇
  2023年   15篇
  2022年   57篇
  2021年   101篇
  2020年   56篇
  2019年   82篇
  2018年   93篇
  2017年   96篇
  2016年   115篇
  2015年   179篇
  2014年   194篇
  2013年   236篇
  2012年   267篇
  2011年   275篇
  2010年   187篇
  2009年   160篇
  2008年   175篇
  2007年   186篇
  2006年   175篇
  2005年   164篇
  2004年   138篇
  2003年   103篇
  2002年   117篇
  2001年   69篇
  2000年   66篇
  1999年   54篇
  1998年   36篇
  1997年   26篇
  1996年   14篇
  1995年   20篇
  1994年   16篇
  1993年   13篇
  1992年   52篇
  1991年   31篇
  1990年   27篇
  1989年   36篇
  1988年   30篇
  1987年   25篇
  1986年   17篇
  1985年   27篇
  1984年   20篇
  1983年   20篇
  1982年   14篇
  1980年   17篇
  1979年   13篇
  1978年   20篇
  1976年   12篇
  1975年   11篇
  1974年   15篇
  1973年   22篇
  1972年   14篇
排序方式: 共有4023条查询结果,搜索用时 250 毫秒
91.
During the mid to late 4th instar period of larval development, the mitochondria of Rhynchosciara spermatocytes undergo highly characteristic morphological changes. In late meiosis the enlarged mitochondria fuse to form a single mitochondrial element which will ultimately extend the length of the spermatid tail. Our studies have shown that synthesis of a circular DNA occurs during this period of mitochondrial “differentiation.” This DNA has a density of 1.681 g/cm3; and its synthesis cannot be detected in somatic tissues such as salivary gland, fat body, or gastric cecum. From analysis of DNA extracted from mitochondrial pellets, we have shown that the circular DNA is associated with the mitochondria. The contour length of the mitochondrial DNA is 9 μm, equivalent to a molecular weight of 18 × 106. Although most metazoan mitochondrial DNAs exhibit contour lengths of approximately 5 μm (10 × 105 daltons), there is no extractable 5 μm circular DNA in these spermatocytes. Therefore, we conclude that either Rhynchosciara spermatocytes possess a distinct 9 μm mitochondrial DNA or that the spermatocyte mitochondrial DNA represents dimers of 5 μm monomers.  相似文献   
92.
93.
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.  相似文献   
94.
Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.  相似文献   
95.
Consumers’ demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.  相似文献   
96.
Understanding how ecological traits have changed over evolutionary time is a fundamental question in biology. Specifically, the extent to which more closely related organisms share similar ecological preferences due to phylogenetic conservation – or if they are forced apart by competition – is still debated. Here, we explored the co-occurrence patterns of freshwater cyanobacteria at the sub-genus level to investigate whether more closely related taxa share more similar niches and to what extent these niches were defined by abiotic or biotic variables. We used deep 16S rRNA gene amplicon sequencing and measured several abiotic environmental parameters (nutrients, temperature, etc.) in water samples collected over time and space in Furnas Reservoir, Brazil. We found that relatively more closely related Synechococcus (in the continuous range of 93%–100% nucleotide identity in 16S) had an increased tendency to co-occur with one another (i.e. had similar realized niches). This tendency could not be easily explained by shared preferences for measured abiotic niche dimensions. Thus, commonly measured abiotic parameters might not be sufficient to characterize, nor to predict community assembly or dynamics. Rather, co-occurrence between Synechococcus and the surrounding community (whether or not they represent true biological interactions) may be a more sensitive measure of realized niches. Overall, our results suggest that realized niches are phylogenetically conserved, at least at the sub-genus level and at the resolution of the 16S marker. Determining how these results generalize to other genera and at finer genetic resolution merits further investigation.  相似文献   
97.
98.
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.  相似文献   
99.
Insular gigantism—evolutionary increases in body size from small-bodied mainland ancestors—is a conceptually significant, but poorly studied, evolutionary phenomenon. Gigantism is widespread on Mediterranean islands, particularly among fossil and extant dormice. These include an extant giant population of Eliomys quercinus on Formentera, the giant Balearic genus †Hypnomys and the exceptionally large †Leithia melitensis of Pleistocene Sicily. We quantified patterns of cranial and mandibular shape and their relationships to head size (allometry) among mainland and insular dormouse populations, asking to what extent the morphology of island giants is explained by allometry. We find that gigantism in dormice is not simply an extrapolation of the allometric trajectory of their mainland relatives. Instead, a large portion of their distinctive cranial and mandibular morphology resulted from the population- or species-specific evolutionary shape changes. Our findings suggest that body size increases in insular giant dormice were accompanied by the evolutionary divergence of feeding adaptations. This complements other evidence of ecological divergence in these taxa, which span predominantly faunivorous to herbivorous diets. Our findings suggest that insular gigantism involves context-dependent phenotypic modifications, underscoring the highly distinctive nature of island faunas.  相似文献   
100.
Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino‐ or carboxyl‐termini are eliminated by the N‐ or C‐degron pathways, respectively. We aimed to elucidate the function of C‐degron pathways and to unveil how normal proteomes are exempt from C‐degron pathway‐mediated destruction. Our data reveal that C‐degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C‐degron and N‐degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C‐degron pathways, but not of defective proteins, suggesting proteolysis‐based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号