首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1550篇
  免费   153篇
  国内免费   2篇
  2024年   3篇
  2023年   13篇
  2022年   40篇
  2021年   68篇
  2020年   31篇
  2019年   35篇
  2018年   50篇
  2017年   43篇
  2016年   57篇
  2015年   94篇
  2014年   105篇
  2013年   112篇
  2012年   152篇
  2011年   141篇
  2010年   88篇
  2009年   76篇
  2008年   82篇
  2007年   80篇
  2006年   70篇
  2005年   68篇
  2004年   52篇
  2003年   39篇
  2002年   43篇
  2001年   7篇
  1999年   5篇
  1998年   13篇
  1997年   9篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1988年   5篇
  1987年   6篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1965年   3篇
  1964年   5篇
  1961年   4篇
  1960年   6篇
  1930年   2篇
  1902年   2篇
  1899年   2篇
排序方式: 共有1705条查询结果,搜索用时 52 毫秒
31.
32.
Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.  相似文献   
33.
Many authors have suggested that the negative effects of roads on animals are largely owing to traffic noise. Although suggestive, most past studies of the effects of road noise on wildlife were conducted in the presence of the other confounding effects of roads, such as visual disturbance, collisions and chemical pollution among others. We present, to our knowledge, the first study to experimentally apply traffic noise to a roadless area at a landscape scale—thus avoiding the other confounding aspects of roads present in past studies. We replicated the sound of a roadway at intervals—alternating 4 days of noise on with 4 days off—during the autumn migratory period using a 0.5 km array of speakers within an established stopover site in southern Idaho. We conducted daily bird surveys along our ‘Phantom Road’ and in a nearby control site. We document over a one-quarter decline in bird abundance and almost complete avoidance by some species between noise-on and noise-off periods along the phantom road and no such effects at control sites—suggesting that traffic noise is a major driver of effects of roads on populations of animals.  相似文献   
34.
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.  相似文献   
35.
Plant pathologists need to manage plant diseases at low incidence levels. This needs to be performed efficiently in terms of precision, cost and time because most plant infections spread rapidly to other plants. Adaptive cluster sampling with a data‐driven stopping rule (ACS*) was proposed to control the final sample size and improve efficiency of the ordinary adaptive cluster sampling (ACS) when prior knowledge of population structure is not known. This study seeks to apply the ACS* design to plant diseases at various levels of clustering and incidences levels. Results from simulation study show that the ACS* is as efficient as the ordinary ACS design at low levels of disease incidence with highly clustered diseased plants and is an efficient design compared with simple random sampling (SRS) and ordinary ACS for some highly to less clustered diseased plants with moderate to higher levels of disease incidence.  相似文献   
36.
Through a parallel approach of tracking product quality through fermentation and purification development, a robust process was designed to reduce the levels of product-related species. Three biochemically similar product-related species were identified as byproducts of host-cell enzymatic activity. To modulate intracellular proteolytic activity, key fermentation parameters (temperature, pH, trace metals, EDTA levels, and carbon source) were evaluated through bioreactor optimization, while balancing negative effects on growth, productivity, and oxygen demand. The purification process was based on three non-affinity steps and resolved product-related species by exploiting small charge differences. Using statistical design of experiments for elution conditions, a high-resolution cation exchange capture column was optimized for resolution and recovery. Further reduction of product-related species was achieved by evaluating a matrix of conditions for a ceramic hydroxyapatite column. The optimized fermentation process was transferred from the 2-L laboratory scale to the 100-L pilot scale and the purification process was scaled accordingly to process the fermentation harvest. The laboratory- and pilot-scale processes resulted in similar process recoveries of 60 and 65%, respectively, and in a product that was of equal quality and purity to that of small-scale development preparations. The parallel approach for up- and downstream development was paramount in achieving a robust and scalable clinical process.  相似文献   
37.
Climate-induced phenological shifts can influence population, evolutionary, and ecological dynamics, but our understanding of these phenomena is hampered by a lack of long-term demographic data. We use a multi-decade census of 5 salmonid species representing 14 life histories in a warming Alaskan stream to address the following key questions about climate change and phenology: How consistent are temporal patterns and drivers of phenology for similar species and alternative life histories? Are shifts in phenology associated with changes in phenotypic variation? How do phenological changes influence the availability of resource subsidies? For most salmonid species, life stages, and life histories, freshwater temperature influences migration timing – migration events are occurring earlier in time (mean = 1.7 days earlier per decade over the 3–5 decades), and the number of days over which migration events occur is decreasing (mean = 1.5 days per decade). Temporal trends in migration timing were not correlated with changes in intra-annual phenotypic variation, suggesting that these components of the phenotypic distribution have responded to environmental change independently. Despite commonalities across species and life histories, there was important biocomplexity in the form of disparate shifts in migration timing and variation in the environmental factors influencing migration timing for alternative life history strategies in the same population. Overall, adult populations have been stable during these phenotypic and environmental changes (λ ≈1.0), but the temporal availability of salmon as a resource in freshwater has decreased by nearly 30 days since 1971 due to changes in the median date of migration timing and decreases in intra-annual variation in migration timing. These novel observations advance our understanding of phenological change in response to climate warming, and indicate that climate change has influenced the ecology of salmon populations, which will have important consequences for the numerous species that depend on this resource.  相似文献   
38.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.  相似文献   
39.
A variety of challenges arise when monitoring wildlife populations for disease. Sampling tissues can be invasive to hosts, and obtaining sufficient sample sizes can be expensive and time‐consuming, particularly for rare species and when pathogen prevalence is low. Environmental DNA (eDNA)‐based detection of pathogens is an alternative approach to surveillance for aquatic communities that circumvents many of these issues. Ranaviruses are emerging pathogens of ectothermic vertebrates linked to die‐offs of amphibian populations. Detecting ranavirus infections is critical, but nonlethal methods have the above issues and are prone to false negatives. We report on the feasibility and effectiveness of eDNA‐based ranavirus detection in the field. We compared ranavirus titres in eDNA samples collected from pond water to titres in wood frog (Lithobates sylvaticus; n = 5) tadpoles in sites dominated by this one species (n = 20 pond visits). We examined whether ranavirus DNA can be detected in eDNA from pond water when infections are present in the pond and if viral titres detected in eDNA samples correlate with the prevalence or intensity of ranavirus infections in tadpoles. With three 250 mL water samples, we were able to detect the virus in all visits with infected larvae (0.92 diagnostic sensitivity). Also, we found a strong relationship between the viral eDNA titres and titres in larval tissues. eDNA titres increased prior to observed die‐offs and declined afterwards, and were two orders of magnitude higher in ponds with a die‐off. Our results suggest that eDNA is useful for detecting ranavirus infections in wildlife and aquaculture.  相似文献   
40.
Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out‐of‐plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号