首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1250篇
  免费   80篇
  1330篇
  2023年   6篇
  2022年   11篇
  2021年   21篇
  2020年   13篇
  2019年   23篇
  2018年   16篇
  2017年   22篇
  2016年   34篇
  2015年   55篇
  2014年   71篇
  2013年   93篇
  2012年   105篇
  2011年   90篇
  2010年   61篇
  2009年   71篇
  2008年   78篇
  2007年   95篇
  2006年   79篇
  2005年   78篇
  2004年   64篇
  2003年   60篇
  2002年   64篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1983年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1971年   4篇
  1969年   2篇
  1967年   3篇
  1964年   2篇
  1941年   1篇
  1936年   1篇
排序方式: 共有1330条查询结果,搜索用时 15 毫秒
71.
The binding orientation of the interfacially activated Thermomyces lanuginosa lipase (TLL, EC 3.1.1.3) on phospholipid vesicles was investigated using site-directed spin labeling and electron spin resonance (ESR) relaxation spectroscopy. Eleven TLL single-cysteine mutants, each with the mutation positioned at the surface of the enzyme, were selectively spin labeled with the nitroxide reagent (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl) methanethiosulfonate. These were studied together with small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), to which TLL has previously been shown to bind in a catalytically active form [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The orientation of TLL with respect to the lipid membrane was investigated using a water-soluble spin relaxation agent, chromium(III) oxalate (Crox), and a recently developed ESR relaxation technique [Lin, Y., et al. (1998) Science 279, 1925-1929], here modified to low microwave amplitude (<0.36 G). The exposure to Crox for the spin label at the different positions on the surface of TLL was determined in the absence and presence of vesicles. The spin label at positions Gly61-Cys and Thr267-Cys, closest to the active site nucleophile Ser146 of the positions analyzed, displayed the lowest exposure factors to the membrane-impermeable spin relaxant, indicating the proximity to the vesicle surface. As an independent technique, fluorescence spectroscopy was employed to measure fluorescence quenching of dansyl-labeled POPG vesicles as exerted by the protein-bound spin labels. The resulting Stern-Volmer quenching constants showed excellent agreement with the ESR exposure factors. An interfacial orientation of TLL is proposed on the basis of the obtained results.  相似文献   
72.
The idea of modifying DNA with bisulfite has paved the way for a variety of polymerase chain reaction (PCR) methods for accurately mapping 5-methylcytosine at specific genes. Bisulfite selectively deaminates cytosine to uracil under conditions where 5-methylcytosine remains unreacted. Following conventional PCR amplification of bisulfite-treated DNA, original cytosines appear as thymine while 5-methylcytosines appear as cytosine. Because the relative thermostability of a DNA duplex increases with increasing content of G:C base pairs, PCR products originating from DNA templates with different contents of 5-methylcytosine differ in melting temperature, i.e., the temperature required to convert the double helix into random coils. We describe two methods that resolve differentially methylated DNA sequences on the basis of differences in melting temperature. The first method integrates PCR amplification of bisulfite-treated DNA and subsequent melting analysis by using a thermal cycler coupled with a fluorometer. By including in the reaction a PCR-compatible, fluorescent dye that specifically binds to double-stranded DNA, the melting properties of the PCR product can be examined directly in the PCR tube by continuous fluorescence monitoring during a temperature transition. The second method relies on resolution of alleles with different 5-methylcytosine contents by analysis of PCR products in a polyacrylamide gel containing a gradient of chemical denaturants. Optimal resolution of differences in melting temperature is achieved by a special design of PCR primers. Both methods allow resolution of "heterogeneous" methylation, i.e., the situation where the content and distribution of 5-methylcytosine in a target gene differ between different molecules in the same sample.  相似文献   
73.
Posttranslational modifications (PTMs) of the histone H3 tail such as methylation, acetylation and phosphorylation play important roles in epigenetic signaling. Here we study the effect of some of these PTMs on the demethylation rates of methylated lysine 9 in vitro using peptide substrates mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc) and some combinations were characterized on full length (FL) KDM4A and KDM4C. We found that the substrates combining trimethylated K4 and K9 resulted in a significant increase in the catalytic activity for FL-KDM4A. For the truncated versions of KDM4A and KDM4C a two-fold increase in the catalytic activity toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide substrates phosphorylated at T11 could not be demethylated by neither truncated nor full length KDM4A and KDM4C, suggesting that phosphorylation of threonine 11 prevents demethylation of the H3K9me3 mark on the same peptide. Acetylation of K14 was also found to influence demethylation rates significantly. Thus, for truncated KDM4A, acetylation on K14 of the substrate leads to an increase in enzymatic catalytic efficiency (k cat/K m), while for truncated KDM4C it induces a decrease, primarily caused by changes in K m. This study demonstrates that demethylation activities towards trimethylated H3K9 are significantly influenced by other PTMs on the same peptide, and emphasizes the importance of studying these interactions at the peptide level to get a more detailed understanding of the dynamics of epigenetic marks.  相似文献   
74.
The proper identification of differentially methylated CpGs is central in most epigenetic studies. The Illumina HumanMethylation450 BeadChip is widely used to quantify DNA methylation; nevertheless, the design of an appropriate analysis pipeline faces severe challenges due to the convolution of biological and technical variability and the presence of a signal bias between Infinium I and II probe design types. Despite recent attempts to investigate how to analyze DNA methylation data with such an array design, it has not been possible to perform a comprehensive comparison between different bioinformatics pipelines due to the lack of appropriate data sets having both large sample size and sufficient number of technical replicates. Here we perform such a comparative analysis, targeting the problems of reducing the technical variability, eliminating the probe design bias and reducing the batch effect by exploiting two unpublished data sets, which included technical replicates and were profiled for DNA methylation either on peripheral blood, monocytes or muscle biopsies. We evaluated the performance of different analysis pipelines and demonstrated that: (1) it is critical to correct for the probe design type, since the amplitude of the measured methylation change depends on the underlying chemistry; (2) the effect of different normalization schemes is mixed, and the most effective method in our hands were quantile normalization and Beta Mixture Quantile dilation (BMIQ); (3) it is beneficial to correct for batch effects. In conclusion, our comparative analysis using a comprehensive data set suggests an efficient pipeline for proper identification of differentially methylated CpGs using the Illumina 450K arrays.  相似文献   
75.
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.  相似文献   
76.
In-gel digestion of proteins isolated by gel electrophoresis is a cornerstone of mass spectrometry (MS)-driven proteomics. The 10-year-old recipe by Shevchenko et al. has been optimized to increase the speed and sensitivity of analysis. The protocol is for the in-gel digestion of both silver and Coomassie-stained protein spots or bands and can be followed by MALDI-MS or LC-MS/MS analysis to identify proteins at sensitivities better than a few femtomoles of protein starting material.  相似文献   
77.
Innate recognition of viruses is mediated by pattern recognition receptors (PRRs) triggering expression of antiviral interferons (IFNs) and proinflammatory cytokines. In mice, Toll-like receptor 2 (TLR2) and TLR9 as well as intracellular nucleotide-sensing pathways have been shown to recognize herpes simplex virus (HSV). Here, we describe how human primary macrophages recognize early HSV infection via intracellular pathways. A number of inflammatory cytokines, IFNs, and IFN-stimulated genes were upregulated after HSV infection. We show that early recognition of HSV and induction of IFNs and inflammatory cytokines are independent of TLR2 and TLR9, since inhibition of TLR2 using TLR2 neutralizing antibodies did not affect virus-induced responses and the macrophages were unresponsive to TLR9 stimulation. Instead, HSV recognition involves intracellular recognition systems, since induction of tumor necrosis factor alpha (TNF-α) and IFNs was dependent on virus entry and replication. Importantly, expression of IFNs was strongly inhibited by small interfering RNA (siRNA) knockdown of MAVS, but this MAVS-dependent IFN induction occurred independently of the recently discovered polymerase III (Pol III)/RIG-I DNA sensing system. In contrast, induction of TNF-α was largely independent of MAVS, suggesting that induction of inflammatory cytokines during HSV infection proceeds via a novel pathway. Transfection with ODN2006, a broad inhibitor of intracellular nucleotide recognition, revealed that nucleotide-sensing systems are employed to induce both IFNs and TNF-α. Finally, using siRNA knockdown, we found that MDA5, but not RIG-I, was the primary mediator of HSV recognition. Thus, innate recognition of HSV by human primary macrophages occurs via two distinct intracellular nucleotide-sensing pathways responsible for induction of IFNs and inflammatory cytokine expression, respectively.Virus recognition is essential for activation of innate antiviral immune defense and the subsequent induction of acquired immunity. Conserved pathogen motifs, termed pathogen-associated molecular patterns (PAMPs), are recognized by pattern recognition receptors (PRRs). Virus-recognizing PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and a number of intracellular DNA receptors. Several TLRs have been attributed roles in the recognition of virus. TLR2 and TLR4 recognize viral surface structures (3, 6, 18, 31), TLR3 recognizes double-stranded RNA (dsRNA) (2), and TLR7/8 and TLR9 function as signaling receptors for viral single-stranded RNA (ssRNA) (8, 11, 21) and CpG DNA (12, 20), respectively.Within the cell, cytoplasmic RLRs RIG-I and MDA5 both recognize accumulation of virus-derived dsRNA; in addition, RIG-I recognizes 5′-triphosphated RNA (14, 27, 39, 40). In addition to the RLRs, a number of receptors recognize foreign DNA. Presently, three DNA receptors have been identified: Z-DNA binding protein 1 (ZBP-1, or DAI) (36) and RNA polymerase III (Pol III) (1, 4) both mediate interferon (IFN) and cytokine production, whereas the AIM2 inflammasome is involved in caspase 1 activation in response to cytoplasmic dsDNA (13).Herpes simplex virus type 1 (HSV-1) and HSV-2 are two closely related human DNA viruses associated with a number of serious diseases, including orofacial infections, encephalitis, and genital infections (34). Macrophages play an important role in the first line of defense against viral infection via production of IFNs, cytokines, and chemokines that regulate the progress of the virus infection and activate and support appropriate defense mechanisms (9, 10, 24).TLR2, TLR3, and TLR9 have been identified as mediators of proinflammatory cytokine production during HSV infections. TLR2 mediates an overzealous inflammatory cytokine response following HSV-1 infection in mice, promoting mononuclear cell infiltration of the brain and development of encephalitis (18). TLR3 mediates type I and III IFN production in human fibroblasts (41). TLR9 recognizes genomic DNA from HSV-1 and HSV-2 in murine plasmacytoid dendritic cells (DCs) (17, 20) and mediates tumor necrosis factor alpha (TNF-α) and CCL5 production in murine macrophages (22). Both TLR2 and TLR9 mediate recognition of HSV and cytokine production in murine conventional DCs (35). HSV is recognized by an RLR/MAVS-dependent mechanism in murine macrophages and mouse embryonic fibroblasts (MEFs) (5, 29, 30). Recent data suggest that RNA Pol III mediates IFN production following HSV-1 infection and transfection with HSV-1 DNA in macrophage-like RAW 264.7 cells (4). Finally, murine L929 fibroblast-like cells are moderately inhibited in their ability to produce IFN after HSV-1 infection when ZBP-1 is knocked down (19, 36). Thus, several PRRs have been reported to recognize HSV-1 in murine cells and different cell lines, but the pathways responsible for sensing this virus in human primary macrophages and their impact on cytokine expression have not previously been described.In this work, we investigate the recognition pathways underlying HSV-induced cytokine and chemokine expression in human primary macrophages. We demonstrate that HSV-1-induced IFN and cytokine expression is independent of TLR2 and TLR9 but highly dependent on virus replication and intracellular nucleotide recognition systems. Specifically, induction of IFNs is dependent on MAVS and MDA5, whereas TNF-α is induced by a novel intracellular nucleotide-sensing system.  相似文献   
78.
A short exposure to a mild cold stress is sufficient to increase cold tolerance in many insects. This phenomenon, termed rapid cold hardening (RCH) expands the thermal interval that can be exploited by the insect. To investigate the possible role of altered metabolite levels during RCH, the present study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive output. Cold shock caused a persistent disturbance of the metabolite profile that correlated well with a delayed onset of cold shock mortality. The disruption of metabolite homeostasis was smaller following RCH, where control levels were fully recovered after 72 h. RCH improved both survival and reproductive output after a subsequent cold shock but the RCH treatment alone was associated with costs in terms of reduced survival and reproductive output. The most pronounced changes following the RCH treatment were elevated levels of glucose and trehalose. Although, it is difficult to discern if a change in a specific metabolite is linked to physiological processes of adaptive, neutral or detrimental nature we observed that the onset and magnitude of the increased sugar levels correlated tightly with the improved chill tolerance following RCH. These findings suggest a putative role of cryoprotectants during RCH which are discussed in the light of the existing literature on the mechanistic background of RCH.  相似文献   
79.
80.
BACKGROUND AND AIM: It has been suggested that Helicobacter pylori infection may prevent gastroesophageal reflux, possibly through gastric atrophy. Since, however, previous results are contradictory and no population-based studies are available, the relationship between H. pylori and reflux remains uncertain. The aim of this study was to investigate this relationship in a population-based, nested, case-control study. METHODS: From a cohort of 65,363 individuals, representing 71.2% of the adult population in the Norwegian county of Nord-Trondelag, we randomly selected 472 persons with recurrent reflux symptoms (cases) and 472 without such symptoms (controls). Occurrence of H. pylori and its virulence factor cagA was determined serologically, using an immunoblot assay. Gastric atrophy was assessed through serum levels of pepsinogen I. Odds ratios (OR) with 95% confidence intervals (CI), adjusted for potential confounding factors, represented relative risks. RESULTS: H. pylori infection was not associated with a decreased risk of reflux symptoms (OR 1.1, 95% CI 0.8-1.6), irrespective of positive cagA status (OR 1.1, 95% CI 0.8-1.5). Gastric atrophy reduced the risk of reflux symptoms (OR 0.2, 95% CI 0.0-0.6). Infection with H. pylori entailed a ninefold increase in the risk of gastric atrophy compared to non-infection (OR 8.9, 95% CI 2.0-39.9). CONCLUSIONS: H. pylori infection, irrespective of cagA status, did not affect the occurrence of reflux symptoms in this population-based setting. Infected individuals are at increased risk of gastric atrophy, which in turn reduces reflux symptoms, but due to the low frequency of gastric atrophy among infected individuals overall, there was no association with reflux symptoms on a population level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号