首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1142篇
  免费   79篇
  2023年   5篇
  2022年   10篇
  2021年   19篇
  2020年   13篇
  2019年   20篇
  2018年   16篇
  2017年   22篇
  2016年   34篇
  2015年   53篇
  2014年   65篇
  2013年   88篇
  2012年   100篇
  2011年   85篇
  2010年   58篇
  2009年   64篇
  2008年   74篇
  2007年   88篇
  2006年   72篇
  2005年   74篇
  2004年   60篇
  2003年   53篇
  2002年   59篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1971年   3篇
  1965年   1篇
  1964年   2篇
排序方式: 共有1221条查询结果,搜索用时 15 毫秒
151.
CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.  相似文献   
152.
In protein splicing, an intervening protein sequence (intein) in the host protein excises itself out and ligates two split host protein sequences (exteins) to produce a mature host protein. Inteins require the involvement for the splicing of the first residue of the extein that follows the intein (which is Cys, Ser, or Thr). Other extein residues near the splicing junctions could modulate splicing efficiency even when they are not directly involved in catalysis. Mutual interdependence between this molecular parasite (intein) and its host protein (exteins) is not beneficial for intein spread but could be advantageous for intein survival during evolution. Elucidating extein-intein dependency has increasingly become important since inteins are recognized as useful biotechnological tools for protein ligation. We determined the structures of one of inteins with high splicing efficiency, the RadA intein from Pyrococcus horikoshii (PhoRadA). The solution NMR structure and the crystal structures elucidated the structural basis for its high efficiency and directed our efforts of engineering that led to rational design of a functional minimized RadA intein. The crystal structure of the minimized RadA intein also revealed the precise interactions between N-extein and the intein. We systematically analyzed the effects at the -1 position of N-extein and were able to significantly improve the splicing efficiency of a less robust splicing variant by eliminating the unfavorable extein-intein interactions observed in the structure. This work provides an example of how unveiling structure-function relationships of inteins offer a promising way of improving their properties as better tools for protein engineering.  相似文献   
153.
The vertebrate 2-5A system is part of the innate immune response and central to cellular antiviral activities. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′-5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′-5′ oligoadenylate synthetases. The 2-5As bind and activate RNase L, an unspecific endoribonuclease, resulting in viral and cellular RNA decay. Given that most endogenous RNAs are degraded by RNase L, continued enzyme activity will eventually lead to cell growth arrest and cell death. This is averted, when 2-5As and their 5′-dephosphorylated forms, the so-called 2-5A core molecules, are cleaved and thus inactivated by 2′-5′-specific nuclease(s), e.g. phosphodiesterase 12, thereby turning RNase L into its latent form. In this study, we have characterized the human phosphodiesterase 12 in vitro focusing on its ability to degrade 2-5As and 2-5A core molecules. We have found that the enzyme activity is distributive and is influenced by temperature, pH and divalent cations. This allowed us to determine Vmax and Km kinetic parameters for the enzyme. We have also identified a novel 2′-5′-oligoadenylate nuclease; the human plasma membrane-bound ectonucleotide pyrophosphatase/phosphodiesterase 1, suggesting that 2-5A catabolism may be a multienzyme-regulated process.  相似文献   
154.
Human leukotriene C? synthase (hLTC4S) is an integral membrane protein that catalyzes the committed step in the biosynthesis of cysteinyl-leukotrienes, i.e., formation of leukotriene C? (LTC?). This molecule, together with its metabolites LTD? and LTE?, induces inflammatory responses, particularly in asthma, and thus, the enzyme is an attractive drug target. During the catalytic cycle, glutathione (GSH) is activated by hLTC4S that forms a nucleophilic thiolate anion that will attack LTA?, presumably according to an S(N)2 reaction to form LTC?. We observed that GSH thiolate anion formation is rapid and occurs at all three monomers of the homotrimer and is concomitant with stoichiometric release of protons to the medium. The pK(a) (5.9) for enzyme-bound GSH thiol and the rate of thiolate formation were determined (k(obs) = 200 s?1). Taking advantage of a strong competitive inhibitor, glutathionesulfonic acid, shown here by crystallography to bind in the same location as GSH, we determined the overall dissociation constant (K(d((GS) = 14.3 μM). The release of the thiolate was assessed using a GSH release experiment (1.3 s?1). Taken together, these data establish that thiolate anion formation in hLTC4S is not the rate-limiting step for the overall reaction of LTC? production (k(cat) = 26 s?1), and compared to the related microsomal glutathione transferase 1, which displays very slow GSH thiolate anion formation and one-third of the sites reactivity, hLTC4S has evolved a different catalytic mechanism.  相似文献   
155.
Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well.  相似文献   
156.
157.
Attomole (10(-18)mol) levels of RNA and DNA isolated from beer spoilage bacterial cells Lactobacillus brevis have been detected by the electrochemical sandwich DNA hybridization assay exploiting enzymatic activity of lipase. DNA sequences specific exclusively to L. brevis DNA and RNA were selected and used for probe and target DNA design. The assay employs magnetic beads (MB) modified with a capture DNA sequence and a reporter DNA probe labeled with the enzyme, both made to be highly specific for L. brevis DNA. Lipase-labeled DNAs captured on MBs in the sandwich assay were collected on gold electrodes modified with a ferrocene (Fc)-terminated SAM formed by aliphatic esters. Lipase hydrolysis of the ester bond released a fraction of the Fc redox active groups from the electrode surface, decreasing the electrochemical signal from the surface-confined Fc. The assay, shown to be efficient for analysis of short synthetic DNA sequences, was ineffective with genomic double stranded bacterial DNA, but it allowed down to 16 amole detection of 1563 nts long RNA, isolated from bacterial ribosomes without the need for PCR amplification, and single DNA strands produced from ribosomal RNA. No interference from E. coli RNA was registered. The assay allowed analysis of 400 L. brevis cells isolated from 1L of beer, which fits the "alarm signal" range (from 1 to 100 cells per 100mL).  相似文献   
158.
The triphosphate of the thymine derivative of 2′-amino-LNA (2′-amino-LNA-TTP) was synthesised and found to be a good substrate for Phusion® HF DNA polymerase, allowing enzymatic synthesis of modified DNA encoded by an unmodified template. To complement this, 2′-amino-LNA-T phosphoramidites were incorporated into DNA oligonucleotides which were used as templates for enzymatic synthesis of unmodified DNA using either KOD, KOD XL or Phusion polymerases. 2′-Amino-LNA-T in the template and 2′-amino-LNA-TTP as a substrate both decreased reaction rate and yield compared to unmodified DNA, especially for sequences with multiple 2′-amino-LNA-T nucleotides.  相似文献   
159.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号