首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34854篇
  免费   2480篇
  国内免费   7篇
  2023年   232篇
  2022年   370篇
  2021年   699篇
  2020年   533篇
  2019年   580篇
  2018年   1324篇
  2017年   1143篇
  2016年   1286篇
  2015年   1734篇
  2014年   1786篇
  2013年   2248篇
  2012年   2679篇
  2011年   2434篇
  2010年   1592篇
  2009年   1345篇
  2008年   1898篇
  2007年   1743篇
  2006年   1696篇
  2005年   1452篇
  2004年   1429篇
  2003年   1259篇
  2002年   1169篇
  2001年   668篇
  2000年   582篇
  1999年   523篇
  1998年   345篇
  1997年   246篇
  1996年   266篇
  1995年   242篇
  1994年   180篇
  1993年   179篇
  1992年   288篇
  1991年   285篇
  1990年   229篇
  1989年   220篇
  1988年   199篇
  1987年   173篇
  1986年   166篇
  1985年   190篇
  1984年   139篇
  1983年   94篇
  1982年   91篇
  1981年   94篇
  1980年   92篇
  1979年   118篇
  1978年   105篇
  1977年   84篇
  1976年   79篇
  1974年   76篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A defective human foamy provirus generated by pregenome splicing.   总被引:4,自引:1,他引:3       下载免费PDF全文
A Saïb  J Pris    H de Th 《The EMBO journal》1993,12(11):4439-4444
  相似文献   
22.
Cytokinesis must be initiated only after chromosomes have been segregated in anaphase and must be terminated once cleavage is completed. We show that the fission yeast protein Etd1 plays a central role in both of these processes. Etd1 activates the guanosine triphosphatase (GTPase) Spg1 to trigger signaling through the septum initiation network (SIN) pathway and onset of cytokinesis. Spg1 is activated in late anaphase when spindle elongation brings spindle pole body (SPB)–localized Spg1 into proximity with its activator Etd1 at cell tips, ensuring that cytokinesis is only initiated when the spindle is fully elongated. Spg1 is active at just one of the two SPBs during cytokinesis. When the actomyosin ring finishes constriction, the SIN triggers disappearance of Etd1 from the half of the cell with active Spg1, which then triggers Spg1 inactivation. Asymmetric activation of Spg1 is crucial for timely inactivation of the SIN. Together, these results suggest a mechanism whereby cell asymmetry is used to monitor cytoplasmic partitioning to turn off cytokinesis signaling.  相似文献   
23.
24.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
25.
26.
Renal metabolism has been studied in eight dogs before and 48 hr after a 60-min period of renal ischemia induced by clamping the left renal artery with the simultaneous removal of the right kidney, and in 12 sham-operated animals. The study involved the measurement of renal uptake and production of lactate, glutamine, glutamate, alanine, ammonium, and oxygen, and the measurement of the tissue concentrations of ATP, glutamine, lactate, alpha-ketoglutarate, aspartate, and alanine in the renal cortex. Two days after a temporary renal ischemia, the remaining kidney showed a 22% decrease in glomerular filtration rate (GFR) and a 25% decrease in renal plasma flow. Fractional sodium and potassium excretions were similar to those of control dogs. Renal production or extraction of glutamine, glutamate, alanine, ammonium, and oxygen (all expressed by 100 ml of GFR) was not significantly different in basal conditions or 2 days after ischemia, but lactate extraction was reduced in postischemic kidneys (-101 +/- 29 vs -204 +/- 38 mumol/100 ml GFR in control dogs). The cortical concentrations of glutamine and glutamate were lower in postischemic than in control kidneys. No differences were found in cortical concentration of alpha-ketoglutarate, aspartate, lactate, pyruvate, or ATP, but total nucleotides and inorganic phosphate were decreased in postischemic kidneys. It is concluded that in the recovery phase of the ischemia, a decreased lactate uptake is the main metabolic change, and total ATP production is adapted to the decrease of GFR and sodium reabsorption.  相似文献   
27.
28.
29.
Cortinarius sarcoflammeus is proposed as a new species belonging to subgenus Dermocybe, on the basis of its morphological, chemical and ecological characters. The strong red-orange colour of the context and stipe base, large spores, sphagnicolous habitat and high dermorubin content are characteristic for the new species. Holotypes of C. huronensis and C. huronensis var. olivaceus have been examined for comparison, and their differences discussed. Photographs and line drawings of C. sarcoflammeus are added. Received February 13, 2001 Accepted March 23, 2001  相似文献   
30.
Experiments were carried out to evaluate the effects of exposure to nitric oxide on the ability by NADPH‐dependent microsomal electron transfer to generate oxygen radicals. Such interactions could play a role in the potential antioxidant action of nitric oxide (NO). Isolated microsomes from soybean ( Glycine max [L.] Merr. cv. Hood) embryonic axes were exposed to an exogenously added source of nitric oxide (NO) (S‐nitrosoglutathione + dithiothreitol). The O2 generation rate by microsomes exposed to NO decreased significantly as compared to the rate measured in microsomes incubated in the absence of NO. The exposure of the microsomes to the NO donor did not alter the microsomal rate of hydroxyl radical generation. Preincubation of the microsomes with the NO donor affected neither iron reduction rate nor activity of cytochrome c reductase. However, cytochrome P450 activity was significantly inhibited after exposure to NO. This inhibition was completely prevented by hemoglobin. The data are consistent with the hypothesis that NO exhibits a potential antioxidant role in the plant cell by decreasing the rate of generation of superoxide anion. Since endogenous NO was detected in homogenates of soybean embryonic axes by EPR studies, this interaction between NO and cytochrome P450 in soybean embryonic axes could be a factor of relevance for the control of oxidative stress in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号