首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   23篇
  193篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2017年   3篇
  2016年   2篇
  2014年   4篇
  2013年   13篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
11.
Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.  相似文献   
12.
Domain swapping is a structural phenomenon that plays an important role in the mechanism of oligomerization of some proteins. The monomer units in the oligomeric structure become entangled with each other. Here we investigate the mechanism of domain swapping in diphtheria toxin and the structural criteria required for it to occur by analyzing the slower modes of motion with elastic network models, Gaussian network model and anisotropic network model. We take diphtheria toxin as a representative of this class of domain-swapped proteins and show that the domain, which is being swapped in the dimeric state, rotates and twists, in going from the "open" to the "closed" state, about a hinge axis that passes through the middle of the loop extending between two domains. A combination of the intra- and intermolecular contacts of the dimer is almost equivalent to that of the monomer, which shows that the relative orientations of the residues in both forms are almost identical. This is also reflected in the calculated B-factors when compared with the experimentally determined B-factors in x-ray crystal structures. The slowest modes of both the monomer and dimer show a common hinge centered on residue 387. The differences in distances between the monomer and the dimer also shows the hinge at nearly the same location (residue 381). Finally, the first three dominant modes of anisotropic network model together shows a twisting motion about the hinge centered on residue 387. We further identify the location of hinges for a set of another 12 domain swapped proteins and give the quantitative measures of the motions of the swapped domains toward their "closed" state, i.e., the overlap and correlation between vectors.  相似文献   
13.
14.
We develop a computationally efficient method to simulate the transition of a protein between two conformations. Our method is based on a coarse-grained elastic network model in which distances between spatially proximal amino acids are interpolated between the values specified by the two end conformations. The computational speed of this method depends strongly on the choice of cutoff distance used to define interactions as measured by the density of entries of the constant linking/contact matrix. To circumvent this problem we introduce the concept of using a cutoff based on a maximum number of nearest neighbors. This generates linking matrices that are both sparse and uniform, hence allowing for efficient computations that are independent of the arbitrariness of cutoff distance choices. Simulation results demonstrate that the method developed here reliably generates feasible intermediate conformations, because our method observes steric constraints and produces monotonic changes in virtual bond and torsion angles. Applications are readily made to large proteins, and we demonstrate our method on lactate dehydrogenase, citrate synthase, and lactoferrin. We also illustrate how this framework can be used to complement experimental techniques that partially observe protein motions.  相似文献   
15.
Solvent effect on binding thermodynamics of biopolymers   总被引:2,自引:0,他引:2  
The indirect solvent-induced effect on the free energy of binding of biopolymers is examined within the framework of classical statistical mechanics. We focus specifically on the role of the solute-solvent hydrogen bonding. In particular, we have estimated the first order solvent effect on the indirect interaction between two biopolymers. We find that the solvent-induced interactions between two hydrophilic groups through water-bridged hydrogen bonds could significantly enhance the binding free energy. Some preliminary estimates indicate that this effect is significant and perhaps could be crucial in molecular recognition processes. Furthermore, we have calculated, from crystal structure data, the distance distribution between all the oxygens and nitrogens on the surface of some proteins that do not belong to the binding domain. In most cases we found an enhanced peak in the range of 4-5 A, which is where we expect to find strong solvent-induced interactions.  相似文献   
16.
We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Calpha atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Calpha coarse-grained model is >(300,000)(2). However, it reduces to (84)(2) when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed.  相似文献   
17.
18.
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (VSM) Ca2+ responses to the NO donor spermine NONOate in UTP-constricted, isolated pressurized small pulmonary arteries from control and CH rats. Consistent with our previous findings in perfused lungs, we observed attenuated NO-dependent vasodilation following CH in endothelium-intact vessels. However, in endothelium-denuded vessels, responses to spermine NONOate were augmented in CH rats compared with controls, thus demonstrating an inhibitory influence of the endothelium on NO-dependent reactivity following CH. Whereas both the ROS scavenger tiron and the ETA receptor antagonist BQ-123 augmented NO-dependent reactivity in endothelium-intact vessels from CH rats, neither fully restored vasodilatory responses to those observed following endothelium denudation in vessels from CH rats. In contrast, the combination of tiron and BQ-123 or the nonselective ET receptor antagonist PD-145065 enhanced NO responsiveness in endothelium-intact vessels from CH rats similar to that observed following endothelium denudation. We conclude that both endothelium-derived ROS and ET-1 attenuate NO-dependent pulmonary vasodilation following CH. Furthermore, CH augments pulmonary VSM reactivity to NO.  相似文献   
19.
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a “wedge” that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号