首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  2019年   1篇
  2018年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   3篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
91.
92.
93.
Metabolism of the proximate carcinogen trans-3,4-dihydroxy-3,4-dihydrodibenz[c,h]acridine has been examined with rat liver enzymes. The dihydrodiol is metabolized at a rate of 2.4 nmol/nmol of cytochrome P450 1A1/min with microsomes from 3-methylcholanthrene-treated rats, a rate more than 10-fold higher than that observed with microsomes from control or phenobarbital-treated rats. Major metabolises consisted of a diastereomeric pair of bis-dihydrodiols (68-83%), where the new dihydrodiol group has been introduced at the 8,9-position, tetraols derived from bay region 3,4-diol-1,2-epoxides (15-23%), and a small amount of a phenolic dihydrodiol(s) where the new hydroxy group is at the 8,9-position of the substrate. A highly purified monooxygenase system reconstituted with cytochrome P450 1A1 and epoxide hydrolase (17 nmol of metabolites/nmol of cytochrome P450 1A1/min) gave a metabolite profile very similar to that observed with liver microsomes from 3-methylcholanthrene-treated rats. Study of the stereoselectivity of these microsomes established that the (+)-(3S,4S)-dihydrodiol gave mainly the diol epoxide-1 diastereomer, in which the benzylic 4-hydroxyl group and epoxide oxygen are cis. The (-)-(3R,4R)-dihydrodiol gave mainly diol epoxide-2 where these same groups are trans. The major enantiomers of the diastereomeric bis-dihydrodiols are shown to have the same absolute configuration at the 8,9-position. Correlations of circular dichroism spectra suggest this configuration to be (8R,9R). The (8R,9S)-oxide may be their common precursor.  相似文献   
94.
The alkylating agent 2-bromo-4'-nitroacetophenone (BrNAP) binds covalently to each of 10 isozymes of purified rat liver microsomal cytochrome P-450 (P-450a-P-450j) but substantially inhibits the catalytic activity of only cytochrome P-450c. Regardless of pH, incubation time, presence of detergents, or concentration of BrNAP, treatment of cytochrome P-450c with BrNAP resulted in no more than 90% inhibition of catalytic activity. Alkylation with BrNAP did not cause the release of heme from the holoenzyme or alter the spectral properties of cytochrome P-450c, data that exclude the putative heme-binding cysteine, Cys-460, as the major site of alkylation. Two residues in cytochrome P-450c reacted rapidly with BrNAP, for which reason maximal loss of catalytic activity was invariably associated with the incorporation of approximately 1.5 mol of BrNAP/mol of cytochrome P-450c. Two major radio-labeled peptides were isolated from a tryptic digest of [14C]BrNAP-treated cytochrome P-450c by reverse-phase high performance liquid chromatography. The amino acid sequence of each peptide was determined by microsequence analysis, but the identification of the residues alkylated by BrNAP was complicated by the tendency of the adducts to decompose when subjected to automated Edman degradation. However, results of competitive binding experiments with the sulfhydryl reagent 4,4'-dithiodipyridine identified Cys-292 as the major site of alkylation and Cys-160 as the minor site of alkylation by BrNAP in cytochrome P-450c.  相似文献   
95.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   
96.
Enantiomerically pure isomers of trans-1,2-dihydroxy-1,2-dihydrophenanthrene have been obtained by chromatographic separation of their diastereomeric bis esters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. Liver microsomes from control rats, as well as rats treated with phenobarbital or 3-methylcholanthrene, metabolize these dihydrodiols to a pair of diastereomerically related bay-region 1,2-diol-3,4-epoxides in which the benzylic hydroxyl group and the epoxide oxygen are either cis (isomer-1) or trans (isomer-2) to each other. In general, diol epoxide-1 was the major metabolite of the (+)-(1S,2S)-dihydrodiol, whereas diol epoxide-2 was the major metabolite of the (?)-(1R-2R)-dihydrodiol. The extent of this stereoselectivity is dependent on the source of the microsomes and is greatest for liver microsomes from 3-methylcholanthrene-treated rats; the ratio of diol epoxide-1 relative to diol epoxide-2 was 5.6 : 1 with the (+)-enantiomer as substrate and 1 : 5.5 with the (?)-enantiomer as substrate. For a given microsomal preparation, rates of metabolism were independent of the enantiomer composition of the substrate. Relative to microsomes from control animals, treatment of rats with 3-methylcholanthrene enhanced rates of metabolism by about 40%, whereas treatment with phenobarbital decreased rates to a similar extent when the amounts of metabolites formed per nanomole of cytochrome P?450 were compared. The failure of treatment by 3-methylcholanthrene to enhance markedly the rate of metabolism of a polycyclic aromatic hydrocarbon substrate is unusual.  相似文献   
97.
The principal oxidative metabolites formed from benz[a]anthracene (BA) by the rat liver microsomal monooxygenase system are the 5,6- and 8,9-arene oxides. In order to determine the enantiomeric composition and absolute configuration of these metabolically formed arene oxides, an HPLC procedure has been developed to separate the six isomeric glutathione conjugates obtained synthetically from the individual enantiomeric arene oxides. Both (+)- and (?)-BA 5,6-oxide gave the two possible positional isomers, but only one positional isomer was formed in each case from (+)- and (?)-BA 8,9-oxide. When [14C]-BA was incubated with a highly purified and reconstituted monooxygenase system containing cytochrome P-450c, and glutathione was allowed to react with the arene oxides formed, radio-active adducts were formed predominantly (>97%) from the (+)-(5S,6R) and (+)-(8R,9S) enantiomers. The present results are in accord with theoretical predictions of the steric requirements of the catalytic binding site of cytochrome P-450c.  相似文献   
98.
Solubilized cytochrome P-450 monooxygenase and epoxide hydrase activities from rat liver microsomes have been separated by column chromatography. The highly active epoxide hydrase fraction is still contaminated with cytochrome P-450, which has very low monooxygenase activity. The highly purified cytochrome P-450 fraction possesses high monooxygenase activity and is essentially devoid of epoxide hydrase activity. Purification factors for the epoxide hydrase through four purification steps are similar with [3H]styrene oxide, [3H]naphthalene oxide, [3H]cyclohexene oxide, and benzene oxide as substrates. Failure of benzene oxide to inhibit hydration of styrene or naphthalene oxide in the most purified preparations in indicative of the presence of at least two hydrases. These purified cytochrome monooxygenase and hydrase preparations represent valuable tools for the study of the intermediacy of arene oxides in drug metabolism. Thus, with naphthalene, only naphthol is formed with the monooxygenase, while both naphthol and the dihydrodiol are formed in the presence of monooxygenase and hydrase. A convenient radiochemical synthesis of [3H]naphthalene 1,2-oxide and assays for the measurement of the hydration of [3H]naphthalene oxide and benzene oxide, based on differential extractions and high-pressure liquid chromatography, respectively, are described.  相似文献   
99.
The in vitro reaction of bacteriophage T7-DNA with the radioactive diastereomeric benzo(a)pyrene-diol-epoxides, (±) [3H9, 3H10]-7β,8α-dihydroxy-9α,10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and (±) [3H9, 3H10]-7β,8α-dihydroxy-9β,19β-epoxy-7,8,9,10-tetrahydrobenzo(1)pyrene, was investigated. Chromatographic analysis of digests of the DNA allowed the distinction of characteristic deoxynucleoside adduct peaks for the two benzo(a)pyrene-diol-epoxides. Our results, together with data from the literature, allow the identification of these adducts as mostly N2-(10-7β,8α,9α-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine and N2-(10-7β,8α,9β-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine, respectively. DNA-benzo(a)pyrene adducts with the same chromatographic properties were formed in mouse embryo fibroblasts upon treatment with benzo(a)pyrene.  相似文献   
100.
Digestion of insoluble myosin with soluble papain produces heavy meromyosin subfragment 1 (HMM-S-1) having ATPase activity and the ability to combine with actin. These fragments of myosin do not undergo appreciable changes in ATPase activity, chromatographic behavior, or actin combining ability during digestion up to 2 h but, as shown by sodium dodecyl sulfate gel electrophoresis, several splits occur in both the heavy and light polypeptide chains. The largest fragment of heavy chain present in fast, slow, cardiac and embryonic HMM-S-1 has a mass of 89,000 daltons. This fragment undergoes further degradation resulting in fragments having masses of the order of 70,000, 50,000, and 27,000 daltons. The latter fragment and other material resulting from the proteolysis of myosin appear as bands in that region of the gels where the light chains are found in electrophoretograms of the parent myosin. The precise size of the fragments and the rates of their formation depend on the type of myosin; slow and cardiac HMM-S-1 and their fragments show greater stability. Embryonic myosin has properties intermediate between those of fast skeletal and cardiac myosin. Experiments involving the combination of HMM-S-1 with actin and experiments with glutaraldehyde cross linking and chromatography on Sephadex G-200 indicate that the fragments separated by sodium dodecyl sulfate gel electrophoresis are held together by noncovalent forces in HMM-S-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号