首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  2019年   1篇
  2018年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   3篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
81.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   
82.
The repair of human DNA after damage by known and potential metabolites of benzo(a)pyrene has been examined utilizing the bromodeoxyuridine photolysis assay. Repair was characterized as either ultraviolet (“long”) or ionizing radiation type (“short”) repair utilizing normal cells and cells deficient in ultraviolet-type repair endonuclease from a patient with xeroderma pigmentosum (XP). We have found that only (±)-7β,8-dihydroxy-9β,-10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BP diol epoxide 1) and its disastereomer, (±)-7β,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BP diol epoxide 2) elicit damage to DNA which is recognizable by the ultraviolet excision repair system in normal human cells. Benzo(a)pyrene 4,5-, 9,10-, 11,12-oxides do not elicit damage which is repairable by this repair system. The 1,2-diol-3,4-epoxides from naphthalene have no measurable activity in our assay. These results indicate that both the benzo(a)pyrene ring structure and the diol epoxide groups are important in causing the damage to DNA which is repairable by the ultraviolet excision repair system. These results parallel the reported high mutagenic activity of these compounds and support the concept that benzo(a)pyrene 7,8-diol-9,10-epoxides may be the ultimate, metabolically activated forms of benzo(a)pyrene.  相似文献   
83.
The effects of a wide variety of chemical modification reagents on the activity of purified rat liver microsomal epoxide hydrase have been investigated. Alkylating agents, such as the phenacyl bromides and benzyl bromide are potent inhibitors of epoxide hydrase. 2-Bromo-4'-nitroacetophenone (p-nitrophenacyl bromide) specifically and irreversibly inactivates epoxide hydrase. Pseudo-first order kinetics of inhibition is observed at higher inhibitor/enzyme ratios. The rate of inactivation is controlled by a group on the enzyme with an apparent pKa of 7.6. Inactivation of the enzyme with 14C-labeled 2-bromo-4'-nitroacetophenone leads to the incorporation of approximately 1 mol of radioactive inhibitor/mol of protein. Epoxide hydrase can be protected against this inactivation by the substrate phenanthrene-9,10-oxide. These results are consistent with the interpretation that 2-bromo-4'-nitroacetophenone acts as an active site-directed inhibitor. The site of alkylation by 2-bromo-4'-nitroacetophenone is a histidine residue of epoxide hydrase. The N-alkylated histidine derivative has been identified as 1-(p-nitrophenacyl)-4-histidine. A possible mechanism for the enzymatic hydration catalyzed by epoxide hydrase is discussed which involves a histidine residue of the enzyme serving as a general base catalyst for the nucleophilic addition of water.  相似文献   
84.
85.
86.
87.
88.
89.
90.
Metabolism of the proximate carcinogen trans-3,4-dihydroxy-3,4-dihydrodibenz[c,h]acridine has been examined with rat liver enzymes. The dihydrodiol is metabolized at a rate of 2.4 nmol/nmol of cytochrome P450 1A1/min with microsomes from 3-methylcholanthrene-treated rats, a rate more than 10-fold higher than that observed with microsomes from control or phenobarbital-treated rats. Major metabolises consisted of a diastereomeric pair of bis-dihydrodiols (68-83%), where the new dihydrodiol group has been introduced at the 8,9-position, tetraols derived from bay region 3,4-diol-1,2-epoxides (15-23%), and a small amount of a phenolic dihydrodiol(s) where the new hydroxy group is at the 8,9-position of the substrate. A highly purified monooxygenase system reconstituted with cytochrome P450 1A1 and epoxide hydrolase (17 nmol of metabolites/nmol of cytochrome P450 1A1/min) gave a metabolite profile very similar to that observed with liver microsomes from 3-methylcholanthrene-treated rats. Study of the stereoselectivity of these microsomes established that the (+)-(3S,4S)-dihydrodiol gave mainly the diol epoxide-1 diastereomer, in which the benzylic 4-hydroxyl group and epoxide oxygen are cis. The (-)-(3R,4R)-dihydrodiol gave mainly diol epoxide-2 where these same groups are trans. The major enantiomers of the diastereomeric bis-dihydrodiols are shown to have the same absolute configuration at the 8,9-position. Correlations of circular dichroism spectra suggest this configuration to be (8R,9R). The (8R,9S)-oxide may be their common precursor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号