首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5852篇
  免费   537篇
  国内免费   1篇
  2023年   28篇
  2022年   56篇
  2021年   149篇
  2020年   71篇
  2019年   107篇
  2018年   118篇
  2017年   110篇
  2016年   167篇
  2015年   301篇
  2014年   299篇
  2013年   395篇
  2012年   562篇
  2011年   496篇
  2010年   340篇
  2009年   292篇
  2008年   367篇
  2007年   414篇
  2006年   388篇
  2005年   326篇
  2004年   310篇
  2003年   301篇
  2002年   228篇
  2001年   49篇
  2000年   44篇
  1999年   44篇
  1998年   60篇
  1997年   23篇
  1996年   35篇
  1995年   26篇
  1994年   21篇
  1993年   29篇
  1992年   20篇
  1991年   13篇
  1990年   17篇
  1989年   24篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   14篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   7篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6390条查询结果,搜索用时 15 毫秒
921.
Current applications of species distribution models (SDM) are typically static, in that they are based on correlations between where a species has been observed (ignoring the date of the observation) and environmental features, such as long‐term climate means, that are assumed to be constant for each site. Because of this SDMs do not account for temporal variation in the distribution of suitable habitat across the range of a species. Here, we demonstrate the temporal variability in the potential geographic distributions of an endangered marsupial, the northern bettong Bettongia tropica as a case study. Models of the species distribution using temporally matched observations of the species with weather data (including extreme weather events) at the time of species observations, were better able to define habitat suitability, identify range edges and uncover competitive interactions than models based on static long‐term climate means. Droughts and variable temperature are implicated in low densities and local extinctions of northern bettong populations close to range edges. Further, we show how variable weather can influence the results of competition with the common rufous bettong Aepyprymnus rufescens. Because traditional SDMs do not account for temporal variability of suitable habitat, static SDMs may underestimate the impacts of climate change particularly as the incidence of extreme weather events is likely to rise.  相似文献   
922.
For a soldier, decisions to use force can happen rapidly and sometimes lead to undesired consequences. In many of these situations, there is a rapid assessment by the shooter that recognizes a threat and responds to it with return fire. But the neural processes underlying these rapid decisions are largely unknown, especially amongst those with extensive weapons experience and expertise. In this paper, we investigate differences in weapons experts and non-experts during an incoming gunfire detection task. Specifically, we analyzed the electroencephalography (EEG) of eleven expert marksmen/soldiers and eleven non-experts while they listened to an audio scene consisting of a sequence of incoming and non-incoming gunfire events. Subjects were tasked with identifying each event as quickly as possible and committing their choice via a motor response. Contrary to our hypothesis, experts did not have significantly better behavioral performance or faster response time than novices. Rather, novices indicated trends of better behavioral performance than experts. These group differences were more dramatic in the EEG correlates of incoming gunfire detection. Using machine learning, we found condition-discriminating EEG activity among novices showing greater magnitude and covering longer periods than those found in experts. We also compared group-level source reconstruction on the maximum discriminating neural correlates and found that each group uses different neural structures to perform the task. From condition-discriminating EEG and source localization, we found that experts perceive more categorical overlap between incoming and non-incoming gunfire. Consequently, the experts did not perform as well behaviorally as the novices. We explain these unexpected group differences as a consequence of experience with gunfire not being equivalent to expertise in recognizing incoming gunfire.  相似文献   
923.
924.
925.
926.
927.
928.
929.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement.  相似文献   
930.
Research has established decreased sensory habituation as a defining feature in migraine, while decreased cognitive habituation has only been found with regard to cognitive assessment of the relative probability of the occurrence of a stimulus event. Our study extended the investigation of interictal habituation in migraine to include cognitive processing when viewing of a series of visually-complex images, similar to those we encounter on the internet everyday. We examined interictal neurocognitive function in migraine from a habituation perspective, using a novel paradigm designed to assess how the response to a series of images changes over time. Two groups of participants--migraineurs (N = 25) and non-migraine controls (N = 25)--were asked to view a set of 232 unfamiliar logos in the context of a target identification task as their brain electrical responses were recorded via event-related potentials (ERPs). The set of logos was viewed serially in each of 10 separate trial blocks, with data analysis focusing on how the ERP responses to the logos in frontal electrodes from 200-600 ms changed across time within each group. For the controls, we found that the amplitude of the late positive potential (LPP) ERP component elicited by the logos had no significant change across trial blocks. In contrast, in migraineurs we found that the LPP significantly increased in amplitude across trial blocks, an effect consistent with a lack of habituation to visual stimuli seen in previous research. Our findings provide empirical support abnormal cognitive processing of complex visual images across time in migraineurs that goes beyond the sensory-level habituation found in previous research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号