首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6317篇
  免费   573篇
  国内免费   6篇
  2023年   30篇
  2022年   70篇
  2021年   164篇
  2020年   75篇
  2019年   112篇
  2018年   127篇
  2017年   109篇
  2016年   180篇
  2015年   318篇
  2014年   320篇
  2013年   411篇
  2012年   583篇
  2011年   525篇
  2010年   361篇
  2009年   322篇
  2008年   391篇
  2007年   436篇
  2006年   407篇
  2005年   351篇
  2004年   334篇
  2003年   325篇
  2002年   249篇
  2001年   57篇
  2000年   53篇
  1999年   53篇
  1998年   65篇
  1997年   27篇
  1996年   41篇
  1995年   28篇
  1994年   21篇
  1993年   34篇
  1992年   22篇
  1991年   16篇
  1990年   24篇
  1989年   26篇
  1988年   20篇
  1987年   15篇
  1986年   10篇
  1985年   10篇
  1984年   16篇
  1983年   12篇
  1982年   17篇
  1981年   9篇
  1980年   12篇
  1979年   9篇
  1977年   12篇
  1976年   8篇
  1975年   10篇
  1974年   14篇
  1973年   8篇
排序方式: 共有6896条查询结果,搜索用时 843 毫秒
991.
992.
993.
994.
In the classic spatially implicit formulation of Hubbell's neutral theory of biodiversity a local community receives immigrants from a metacommunity operating on a relatively slow timescale, and dispersal into the local community is governed by an immigration parameter m . A current problem with neutral theory is that m lacks a clear biological interpretation. Here, we derive analytical expressions that relate the immigration parameter m to the geometry of the plot defining the local community and the parameters of a dispersal kernel. Our results facilitate more rigorous and extensive tests of the neutral theory: we conduct a test of neutral theory by comparing estimates of m derived from fits to empirical species abundance distributions to those derived from dispersal kernels and find acceptable correspondence; and we generate a new prediction of neutral theory by investigating how the shapes of species abundance distributions change theoretically as the spatial scale of observation changes. We also discuss how our main analytical results can be used to assess the error in the mean-field approximations associated with spatially implicit formulations of neutral theory.  相似文献   
995.
Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd) has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.  相似文献   
996.
Western equine encephalitis virus (WEEV) is a naturally occurring recombinant virus derived from ancestral Sindbis and Eastern equine encephalitis viruses. We previously showed that infection by WEEV isolates McMillan (McM) and IMP-181 (IMP) results in high (∼90–100%) and low (0%) mortality, respectively, in outbred CD-1 mice when virus is delivered by either subcutaneous or aerosol routes. However, relatively little is known about specific virulence determinants of WEEV. We previously observed that IMP infected Culex tarsalis mosquitoes at a high rate (app. 80%) following ingestion of an infected bloodmeal but these mosquitoes were infected by McM at a much lower rate (10%). To understand the viral role in these phenotypic differences, we characterized the pathogenic phenotypes of McM/IMP chimeras. Chimeras encoding the E2 of McM on an IMP backbone (or the reciprocal) had the most significant effect on infection phenotypes in mice or mosquitoes. Furthermore, exchanging the arginine, present on IMP E2 glycoprotein at position 214, for the glutamine present at the same position on McM, ablated mouse mortality. Curiously, the reciprocal exchange did not confer mouse virulence to the IMP virus. Mosquito infectivity was also determined and significantly, one of the important loci was the same as the mouse virulence determinant identified above. Replacing either IMP E2 amino acid 181 or 214 with the corresponding McM amino acid lowered mosquito infection rates to McM-like levels. As with the mouse neurovirulence, reciprocal exchange of amino acids did not confer mosquito infectivity. The identification of WEEV E2 amino acid 214 as necessary for both IMP mosquito infectivity and McM mouse virulence indicates that they are mutually exclusive phenotypes and suggests an explanation for the lack of human or equine WEE cases even in the presence of active transmission.  相似文献   
997.
The plant-infecting Secoviridae family of viruses forms part of the Picornavirales order, an important group of non-enveloped viruses that infect vertebrates, arthropods, plants and algae. The impact of the secovirids on cultivated crops is significant, infecting a wide range of plants from grapevine to rice. The overwhelming majority are transmitted by ecdysozoan vectors such as nematodes, beetles and aphids. In this study, we have applied a variety of computational methods to examine the evolutionary traits of these viruses. Strong purifying selection pressures were calculated for the coat protein (CP) sequences of nine species, although for two species evidence of both codon specific and episodic diversifying selection were found. By using Bayesian phylogenetic reconstruction methods CP nucleotide substitution rates for four species were estimated to range from between 9.29×10−3 to 2.74×10−3 (subs/site/year), values which are comparable with the short-term estimates of other related plant- and animal-infecting virus species. From these data, we were able to construct a time-measured phylogeny of the subfamily Comovirinae that estimated divergence of ninety-four extant sequences occurred less than 1,000 years ago with present virus species diversifying between 50 and 250 years ago; a period coinciding with the intensification of agricultural practices in industrial societies. Although recombination (modularity) was limited to closely related taxa, significant and often unique similarities in the protein domains between secovirid and animal infecting picorna-like viruses, especially for the protease and coat protein, suggested a shared ancestry. We discuss our results in a wider context and find tentative evidence to indicate that some members of the Secoviridae might have their origins in insects, possibly colonizing plants in a number of founding events that have led to speciation. Such a scenario; virus infection between species of different taxonomic kingdoms, has significant implications for virus emergence.  相似文献   
998.
Next-generation sequencing (NGS) technologies permit the rapid production of vast amounts of data at low cost. Economical data storage and transmission hence becomes an increasingly important challenge for NGS experiments. In this paper, we introduce a new non-reference based read sequence compression tool called SRComp. It works by first employing a fast string-sorting algorithm called burstsort to sort read sequences in lexicographical order and then Elias omega-based integer coding to encode the sorted read sequences. SRComp has been benchmarked on four large NGS datasets, where experimental results show that it can run 5–35 times faster than current state-of-the-art read sequence compression tools such as BEETL and SCALCE, while retaining comparable compression efficiency for large collections of short read sequences. SRComp is a read sequence compression tool that is particularly valuable in certain applications where compression time is of major concern.  相似文献   
999.
1000.
Cis-acting RNA elements control the accurate expression of human multi-exon protein coding genes. Single nucleotide variants altering the fidelity of this regulatory code and, consequently, pre-mRNA splicing are expected to contribute to the etiology of numerous human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号