首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5793篇
  免费   532篇
  国内免费   1篇
  2023年   28篇
  2022年   53篇
  2021年   148篇
  2020年   70篇
  2019年   107篇
  2018年   117篇
  2017年   108篇
  2016年   167篇
  2015年   299篇
  2014年   297篇
  2013年   392篇
  2012年   553篇
  2011年   488篇
  2010年   337篇
  2009年   291篇
  2008年   363篇
  2007年   410篇
  2006年   389篇
  2005年   323篇
  2004年   306篇
  2003年   299篇
  2002年   225篇
  2001年   45篇
  2000年   41篇
  1999年   43篇
  1998年   60篇
  1997年   22篇
  1996年   35篇
  1995年   27篇
  1994年   22篇
  1993年   29篇
  1992年   18篇
  1991年   14篇
  1990年   17篇
  1989年   24篇
  1988年   18篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6326条查询结果,搜索用时 15 毫秒
991.
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.  相似文献   
992.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   
993.
Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells   总被引:1,自引:0,他引:1  
SEPS1 (also called selenoprotein S, SelS, Tanis or VIMP) is a selenoprotein, localized predominantly in the ER membrane and also on the cell surface. In this report, we demonstrate that SEPS1 protein is also secreted from hepatoma cells but not from five other types of cells examined. The secretion can be abolished by the ER-Golgi transport inhibitor Brefeldin A and by the protein synthesis inhibitor cycloheximide. Using a sandwich ELISA, SEPS1 was detected in the sera of 65 out of 209 human subjects (31.1%, average=15.7+/-1.1 ng/mL). Fractionation of human serum indicated that SEPS1 was associated with LDL and possibly with VLDL. The function of plasma SEPS1 is unclear but may be related to lipoprotein metabolism.  相似文献   
994.
Mobility of extracellular loops may play an important role in the function of outer membrane proteins from Gram-negative bacteria. Molecular dynamics simulations of OpcA from Neisseria meningitidis, embedded in a lipid bilayer, have been used to explore the relationship between the crystal structure and dynamic function of this protein. The results suggest that the crystal environment may constrain the membrane protein structure in a nonphysiological state. The presence of lipids and physiological salt concentrations result in changes in the conformation of the extracellular loops of OpcA, leading to opening of a pore, and to modulation of the molecular surface implicated in recognition of proteoglycan. These changes may be related to the role of OpcA in pathogenesis via modulation of the conformation of a possible sialic acid binding site.  相似文献   
995.
Lipid bilayers are two-dimensional fluids. Here, the effect of monovalent ion concentration on the mixing, and consequently the organization, of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) bilayers has been examined. Epifluorescence microscopy was used to visualize the organization. Fluorescence recovery after photobleaching and attenuated total reflection-Fourier transform infrared spectroscopy were used to assess the fluidity of the lipids. At high ionic strength the DOPC and DOPA lipids appear uniformly mixed. Upon lowering the ionic strength, rapid separation is observed. The DOPA-rich regions appear fractal-like and exhibit hysteresis in their properties. The lipids freely exchange between the two regions. These experiments clearly demonstrate the significant effect that electrostatics can have on membrane organization.  相似文献   
996.
The cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3′,4′-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser428. This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage. THIF treatment also led to an inhibition of cdc2, which was accompanied by the phosphorylation of both p53 (Ser15) and Chk1 (Ser296) and the de-activation of cdc25C phosphatase. We suggest the anti-proliferative actions of THIF may be mediated by initial oxidative DNA damage, activation of ATR and downstream regulation of the p53 and Chk1 pathways leading to cell cycle arrest in G2-M. This may represent one mechanism by which genistein exerts its cellular activity in vivo.  相似文献   
997.
998.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   
999.
Understanding regional variability in species richness is necessary for conservation efforts to succeed in the face of large-scale environmental deterioration. Several analyses of North American vertebrates have shown that climatic energy provides the best explanation of contemporary species richness patterns. The paucity of analyses of insect diversity patterns, however, remains a serious obstacle to a general hypothesis of spatial variation in diversity. We collected species distribution data on a North American beetle genus, Epicauta (Coleoptera: Meloidae) and tested several major diversity hypotheses. These beetles are generally grasshopper egg predators as larvae, and angiosperm herbivores as adults. Epicauta richness is highest in the hot, dry American southwest, and decreases north and east, consistent with the species richness-energy hypothesis. Potential evapotranspiration, which is also the best predictor of richness patterns among North American vertebrates, explains 80.2% of the variability in Epicauta species richness. Net primary productivity and variables measuring climatic heat energy only (such as PET) are not generally comparable, though they are sometimes treated as if they were equivalent. We conclude that the species richness-energy hypothesis currently provides a better overall explanation for Epicauta species richness patterns in North America than other major diversity hypotheses. The observed relationship between climatic energy and regional species richness may provide significant insight into the response of ecological communities to climate change.  相似文献   
1000.
A direct method for determination of Δ5 3β-hydroxysteroid dehydrogenase (3β-HSD) activity was employed in isolated Leydig cells (LC) derived from rats on fetal day 19 (F19) and postnatal (N) days 1,12,24, 34 and 45 and adults. The activity of 3β-HSD in the adult LC was 1.15 ± 0.02 (μmole/μg DNA/hr, mean ± SEM, n = 73). Activities in the other groups, expressed as a percentage of the respective adult control, were: F19-38%; N1-39%; N12-8%; N24-89%; N34-166%; and N45-118%. A good correlation was found between histochemical staining for 3β-HSD and the quantitive method employed. Using (3H)-DHA as a substrate, LC isolated from F19, n1 and N12 produced testosterone in appreciable amounts (41%, 55% and 20% of the toal products respectively) whereas at advanced stages of development (N24 to adulthood) the major product was androstenedione (93 ± 1%). These findings may be explained by the observed decrease in 17β-hydroxysteroid dehydrogenase (17β-HSD) activity, due to an insufficient supply of NADPH, in the older vs. earlier stages of development. This study indicates the presence of steroidogenic enzymatic activity in LC throughout development in the rat. It also provides a relatively simple in vitro model for studies of testicular regulation during development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号