首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5820篇
  免费   531篇
  国内免费   1篇
  6352篇
  2023年   32篇
  2022年   74篇
  2021年   148篇
  2020年   70篇
  2019年   107篇
  2018年   117篇
  2017年   108篇
  2016年   167篇
  2015年   299篇
  2014年   297篇
  2013年   392篇
  2012年   553篇
  2011年   488篇
  2010年   337篇
  2009年   291篇
  2008年   363篇
  2007年   410篇
  2006年   389篇
  2005年   323篇
  2004年   306篇
  2003年   299篇
  2002年   225篇
  2001年   45篇
  2000年   41篇
  1999年   43篇
  1998年   60篇
  1997年   22篇
  1996年   35篇
  1995年   27篇
  1994年   22篇
  1993年   29篇
  1992年   18篇
  1991年   14篇
  1990年   17篇
  1989年   24篇
  1988年   18篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6352条查询结果,搜索用时 15 毫秒
181.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. l-Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of γ-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl2, BSO, or MnCl2 plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl2 or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).  相似文献   
182.
The activation of an immune response to invading microorganisms generally requires recognition by pattern recognition receptors. Beta 1, 3-glucan recognition proteins (GRPs) have specific affinity for beta 1, 3-glucan, a component on the surface of fungi and bacteria. In this study, we show that GRP from Armigeres subalbatus mosquitoes (AsGRP) is able to bind different bacterial species, and that this binding varies from species to species and is independent of Gram type. AsGRP knockdown with double-stranded RNA increases the mortality of mosquitoes to those bacteria that strongly bind AsGRP, but not to bacteria that do not detectably bind AsGRP. This increase in susceptibility is partially evidenced by decreased melanization in Salmonella typhimurium. Furthermore, AsGRP expression is differentially affected by the presence of different species of bacteria. These results demonstrate that AsGRP is selective in its affinity to different bacteria and; therefore, plays a role in the antibacterial immune response of mosquitoes.  相似文献   
183.
We present full-genome genotype imputations for 100 classical laboratory mouse strains, using a novel method. Using genotypes at 549,683 SNP loci obtained with the Mouse Diversity Array, we partitioned the genome of 100 mouse strains into 40,647 intervals that exhibit no evidence of historical recombination. For each of these intervals we inferred a local phylogenetic tree. We combined these data with 12 million loci with sequence variations recently discovered by whole-genome sequencing in a common subset of 12 classical laboratory strains. For each phylogenetic tree we identified strains sharing a leaf node with one or more of the sequenced strains. We then imputed high- and medium-confidence genotypes for each of 88 nonsequenced genomes. Among inbred strains, we imputed 92% of SNPs genome-wide, with 71% in high-confidence regions. Our method produced 977 million new genotypes with an estimated per-SNP error rate of 0.083% in high-confidence regions and 0.37% genome-wide. Our analysis identified which of the 88 nonsequenced strains would be the most informative for improving full-genome imputation, as well as which additional strain sequences will reveal more new genetic variants. Imputed sequences and quality scores can be downloaded and visualized online.  相似文献   
184.
The F1-V vaccine antigen, protective against Yersinia pestis, exhibits a strong tendency to multimerize that affects larger-scale manufacture and characterization. In this work, the sole F1-V cysteine was replaced with serine by site-directed mutagenesis for characterization of F1-V non-covalent multimer interactions and protective potency without participation by disulfide-linkages. F1-V and F1-V(C424S) proteins were overexpressed in Escherichia coli, recovered using mechanical lysis/pH-modulation and purified from urea-solubilized soft inclusion bodies, using successive ion-exchange, ceramic hydroxyapatite, and size-exclusion chromatography. This purification method resulted in up to 2mg/g of cell paste of 95% pure, mono-disperse protein having < or =0.5 endotoxin units per mg by a kinetic chromogenic limulus amoebocyte lysate reactivity assay. Both F1-V and F1-V(C424S) were monomeric at pH 10.0 and progressively self-associated as pH conditions decreased to pH 6.0. Solution additives were screened for their ability to inhibit F1-V self-association at pH 6.5. An L-arginine buffer provided the greatest stabilizing effect. Conversion to >500-kDa multimers occurred between pH 6.0 and 5.0. Conditions for efficient F1-V adsorption to the cGMP-compatible alhydrogel adjuvant were optimized. Side-by-side evaluation for protective potency against subcutaneous plague infection in mice was conducted for F1-V(C424S) monomer; cysteine-capped F1-V monomer; cysteine-capped F1-V multimer; and a F1-V standard reported previously. After a two-dose vaccination with 2 x 20 microg of F1-V, respectively, 100%, 80%, 80%, and 70% of injected mice survived a subcutaneous lethal plague challenge with 10(8) LD(50)Y. pestis CO92. Thus, vaccination with F1-V monomer and multimeric forms resulted in significant, and essentially equivalent, protection.  相似文献   
185.
Although the immune system is capable of mounting a response against many cancers, that response is insufficient for tumor eradication in most patients due to factors in the tumor microenvironment that defeat tumor immunity. We previously identified the immune-suppressive molecule CD200 as up-regulated on primary B cell chronic lymphocytic leukemia (B-CLL) cells and demonstrated negative immune regulation by B-CLL and other tumor cells overexpressing CD200 in vitro. In this study we developed a novel animal model that incorporates human immune cells and human tumor cells to address the effects of CD200 overexpression on tumor cells in vivo and to assess the effect of targeting Abs in the presence of human immune cells. Although human mononuclear cells prevented tumor growth when tumor cells did not express CD200, tumor-expressed CD200 inhibited the ability of lymphocytes to eradicate tumor cells. Anti-CD200 Ab administration to mice bearing CD200-expressing tumors resulted in nearly complete tumor growth inhibition even in the context of established receptor-ligand interactions. Evaluation of an anti-CD200 Ab with abrogated effector function provided evidence that blocking of the receptor-ligand interaction was sufficient for control of CD200-mediated immune modulation and tumor growth inhibition in this model. Our data indicate that CD200 expression by tumor cells suppresses antitumor responses and suggest that anti-CD200 treatment might be therapeutically beneficial for treating CD200-expressing cancers.  相似文献   
186.
Jeremy W. Fox 《Oikos》2007,116(2):189-200
Prey diversity is thought to mediate the strength of top-down and bottom-up effects, but few experiments directly test this hypothesis. I assembled food webs of bacteria and bacterivorous protist prey in laboratory microcosms with all combinations of five productivity levels, two top predator treatments (present or absent), and three prey compositions. Depauperate food chains contained one of two edible prey species, while more diverse food webs contained both edible prey species plus two additional less-edible/inedible prey. Equilibrium theory predicts that prey diversity should weaken the top-down and bottom-up effects on trophic level biomasses, due to density compensation among prey species. Top-down effects should increase with productivity in food chains, but decrease with productivity in food webs. Results revealed highly dynamic top-down effects, the strength of which varied more over time than among treatments. Further, top-down effects did not merely vary in absolute strength over time, but also in relative strength across different prey compositions and productivity levels. It might be expected that equilibrium models would qualitatively reproduce time-averaged results. However, time-averaged data largely failed to support equilibrium predictions. This failure may reflect strong temporal variability in treatment effects combined with nonlinear density dependence of species' per-capita growth rates. Strong temporal variability in the strength of top-down effects has not previously been demonstrated, but likely is common in nature as well.  相似文献   
187.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   
188.
189.
Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins fused to green fluorescent protein (GFP) in live cells, following an increase in DNA replication errors. We demonstrate that foci of the essential DNA polymerase DnaE-GFP decrease following mismatch incorporation and that loss of DnaE-GFP foci requires MutS. Furthermore, we show that MutS and MutL bind DnaE in vitro, suggesting that DnaE is coupled to repair. We also found that DnaE-GFP foci decrease in vivo following a DNA damage-independent arrest of DNA synthesis showing that loss of DnaE-GFP foci is caused by perturbations to DNA replication. We propose that MutS directly contacts the DNA replication machinery, causing a dynamic change in the organization of DnaE at the replication fork during MMR. Our results establish a striking and intimate connection between MMR and the replicating DNA polymerase complex in vivo.  相似文献   
190.
Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X‐ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid‐state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm?2 for a planar layer up to 0.37 mA h cm?2 for a 3D thin film (105 times higher).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号