首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5807篇
  免费   530篇
  国内免费   1篇
  6338篇
  2023年   32篇
  2022年   74篇
  2021年   148篇
  2020年   70篇
  2019年   107篇
  2018年   117篇
  2017年   108篇
  2016年   166篇
  2015年   299篇
  2014年   296篇
  2013年   392篇
  2012年   552篇
  2011年   485篇
  2010年   336篇
  2009年   291篇
  2008年   363篇
  2007年   409篇
  2006年   387篇
  2005年   323篇
  2004年   306篇
  2003年   299篇
  2002年   225篇
  2001年   45篇
  2000年   41篇
  1999年   43篇
  1998年   60篇
  1997年   22篇
  1996年   35篇
  1995年   26篇
  1994年   21篇
  1993年   29篇
  1992年   18篇
  1991年   13篇
  1990年   17篇
  1989年   24篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   14篇
  1973年   7篇
排序方式: 共有6338条查询结果,搜索用时 15 毫秒
31.
Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.  相似文献   
32.
The effect of myristoylation on the 15-amino-acid peptide from the membrane-binding N-terminus of ADP ribosylation factor 1 (ARF1) was studied using neutron diffraction and circular dichroism. A previous study on the non-acylated form indicated that the peptide lies parallel to the membrane, at a shallow depth and in the vicinity of the phosphorylcholine headgroups. It was suggested that the helix does not extend past residue 12, an important consequence for the linking region of the ARF1 protein. In this paper, we show that the result of myristoylation is to increase the helical content reaching the peptide's C-terminus, resulting in the formation of a new hydrophobic face. This increased helicity may augment the entire protein's membrane-binding affinity, indicating that ARF1 effectively has two interdependent membrane-binding motifs.  相似文献   
33.
34.
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.  相似文献   
35.
Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl‐carrier proteins (PCPs) or acyl‐carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210–1218. © 2013 Wiley Periodicals, Inc.  相似文献   
36.
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.  相似文献   
37.
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfedma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky–Muller model of genic incompatibility. We developed microarray‐based, restriction‐site associated DNA (RAD) markers that identified ~1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk‐segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only ~2% of the nuclear genome. This study demonstrates how advances in high‐throughput, genome‐wide genotyping can be applied to mapping reproductive isolation genes and speciation research.  相似文献   
38.
39.
The mediators of the DNA damage response (DDR) are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK) complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR–specific protein kinases.  相似文献   
40.
Apostome ciliates from crayfish and freshwater shrimp in southern and central Alabama were surveyed in this study. Hyalophysa bradburyae was found on both crayfish and shrimp from 16 sites in eight drainages. A new species, Hyalophysa clampi n. sp., was found infesting crayfish at one site and simultaneously infesting crayfish with H. bradburyae at two sites. Characteristics of the trophont ciliature of H. clampi n. sp. separate it from other species in the genus. Particularly, the contractile vacuole pore is oriented posterior to the ventral kineties xyz, kineties 1 and 2 are undivided, an apparent second contractile vacuole pore is present between the ventral portions of kineties 1 and 2, the anterior ventral field is tightly arranged, and there is an apical field of kineties between kineties 4 through 6. This report expands the known range and diversity of the genus Hyalophysa in the state of Alabama.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号