首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198篇
  免费   207篇
  2021年   16篇
  2019年   11篇
  2018年   22篇
  2017年   10篇
  2016年   29篇
  2015年   36篇
  2014年   35篇
  2013年   47篇
  2012年   63篇
  2011年   55篇
  2010年   36篇
  2009年   34篇
  2008年   40篇
  2007年   47篇
  2006年   58篇
  2005年   35篇
  2004年   35篇
  2003年   32篇
  2002年   33篇
  2001年   34篇
  2000年   34篇
  1999年   21篇
  1998年   11篇
  1997年   14篇
  1996年   13篇
  1992年   23篇
  1991年   20篇
  1990年   27篇
  1989年   24篇
  1988年   33篇
  1987年   39篇
  1986年   31篇
  1985年   27篇
  1984年   29篇
  1983年   19篇
  1982年   21篇
  1981年   12篇
  1979年   18篇
  1978年   24篇
  1977年   15篇
  1976年   17篇
  1975年   17篇
  1974年   18篇
  1973年   21篇
  1972年   16篇
  1971年   16篇
  1970年   15篇
  1969年   13篇
  1968年   11篇
  1967年   11篇
排序方式: 共有1405条查询结果,搜索用时 31 毫秒
121.
Because highly invasive species can rapidly assimilate rare taxa, we questioned whether two Florida endangered Lantana depressa varieties existed 21 years after Sanders documented their widespread hybridization with exotic Lantana strigocamara, and whether morphological traits could accurately discriminate genetic individuals. Stepwise discriminant analysis of morphological characters discriminated the three taxa, correctly classifying 98, 91, 89% of L. strigocamara, L. depressa var. depressa, and var. floridana. Hybrids blurred taxonomic distinctions of varieties and reduced classification accuracy by 7–17%. Species-specific Random Fragment Length Polymorphism (RFLP-PCR) confirmed hybridization has occurred. Intersimple Sequence Repeat (ISSR) fingerprints analyzed with STRUCTURE identified three groups indicating introgression. Morphological traits significantly, but weakly correlated with q ratios (P = 0.0001; r 2 = 0.45). Although L. strigocamara introgression is widespread and ongoing, wild populations contain individuals that are predominantly L. depressa genome, supporting actions to remove adventive L. strigocamara, prevent its sale, and promote sales of genetically confirmed natives.  相似文献   
122.
ObjectiveMild and chronic energy restriction results in growth retardation with puberal delay, a nutritional disease known as nutritional dwarfing (ND). The aim of the present study was to assess the profile of hypothalamic luteinizing hormone-releasing hormone (LHRH) release, at baseline and under glutamate stimulation, in ND rats to elucidate gonadotrophic dysfunction. Reproductive ability during refeeding was also studied.Material and methodsAt weaning, 60 male rats were assigned to two groups of 30 animals each: a control and an experimental group. Control rats were fed ad libitum with a balanced rodent diet. The experimental group received 80% of the diet consumed by the control group for 4 weeks. After 4 weeks of food restriction, the ND group was fed freely for 8 weeks. Ten rats from each group were sacrificed every 4 weeks for assays.ResultsAt week 4, body weight and length were significantly diminished in the experimental group vs. the control group (p<0.001). No changes were observed in LHRH baseline release, pulse frequency or amplitude in the experimental group compared with the control group at any time. However, under glutamate stimulation, LHRH release was significantly higher in ND rats than in control rats at week 4 (p<0.05). Refeeding the ND group allowed the rats to reach overall growth and reproductive ability.ConclusionsThe results of the present study suggest that the response to the facilitatory effect of glutamate on LHRH release in post-restricted ND rats is probably related to a lesser central nervous system maturation in relation to their chronological age. The adequate somatic growth and normal reproductive ability attained with refeeding suggest the reversibility of the two energetically costly processes compromised by global, mild and chronic food restriction.  相似文献   
123.
Euprimate grasping feet are characterized by a suite of morphological traits, including an enlarged peroneal process on the base of the first metatarsal, which serves as the insertion site of the peroneus longus muscle. In prosimians, a large process has typically been associated with a powerful hallucal grasp via the contraction of the peroneus longus to adduct the hallux. Recent electromyography (EMG) studies have documented that peroneus longus does not contribute substantially to hallucal grasping in lemurids (Boyer et al., 2007). However, non-lemurid prosimians have a I-V opposable grasp complex that is morphologically different and phylogenetically more primitive than the I-II adductor grasp complex of the lemurids previously studied. Therefore, it is possible that peroneus longus did function during grasping in early euprimates, but lost this function in large-bodied lemurids. The present study tests the hypothesis that a large peroneal process is related to powerful grasping ability in primates displaying the more primitive I-V grasp complex. We use EMG to evaluate the recruitment of peroneus longus, other crural muscles, and adductor hallucis in static and locomotor grasping activities of the slow loris (Nycticebus coucang). Results show that peroneus longus is active during grasping behaviors that require the subject to actively resist inversion of the foot, and likely contributes to a hallucal grasp in these activities. Peroneus longus activity level does not differ between grasping and power grasping activities, nor does it differ between grasping and non-grasping locomotor modes. Conversely, the digital flexors and hallucal adductor are recruited at higher levels during power grasping and grasping locomotor modes. Consequently, we reject the hypothesis that an enlarged peroneal process represents an adaptation specifically to enhance the power of the I-V grasp, but accept that the muscle likely plays a role in adducting the hallux during grasping behaviors that require stabilization of the ankle, and suggest that further work is necessary to determine if this role is sufficient to drive selection for a large peroneal process.  相似文献   
124.
A foot specialized for grasping small branches with a divergent opposable hallux (hallucal grasping) represents a key adaptive complex characterizing almost all arboreal non-human euprimates. Evolution of such grasping extremities probably allowed members of a lineage leading to the common ancestor of modern primates to access resources available in a small-branch niche, including angiosperm products and insects. A better understanding of the mechanisms by which euprimates use their feet to grasp will help clarify the functional significance of morphological differences between the euprimate grasp complex and features representing specialized grasping in other distantly related groups (e.g., marsupials and carnivorans) and in closely related fossil taxa (e.g., plesiadapiforms). In particular, among specialized graspers euprimates are uniquely characterized by a large peroneal process on the base of the first metatarsal, but the functional significance of this trait is poorly understood. We tested the hypothesis that the large size of the peroneal process corresponds to the pull of the attaching peroneus longus muscle recruited to adduct the hallux during grasping. Using telemetered electromyography on three individuals of Varecia variegata and two of Eulemur rubriventer, we found that peroneus longus does not generally exhibit activity consistent with an important function in hallucal grasping. Instead, extrinsic digital flexor muscles and, sometimes, the intrinsic adductor hallucis are active in ways that indicate a function in grasping with the hallux. Peroneus longus helps evert the foot and resists its inversion. We conclude that the large peroneal tuberosity that characterizes the hallucal metatarsal of prosimian euprimates does not correlate to "powerful" grasping with a divergent hallux in general, and cannot specifically be strongly linked to vertical clinging and climbing on small-diameter supports. Thus, the functional significance of this hallmark, euprimate feature remains to be determined.  相似文献   
125.
126.
Pantolestinae is a eutherian subfamily of mammals whose members are known from the middle early Paleocene through at least the beginning of the Oligocene of North America. They are also known from Europe, and possibly Africa. A lack of information on pantolestine skulls has prevented the use of cranial anatomy in evaluation of this group’s enigmatic higher-level phylogenetic relationships. Conversely, postcranial skeletons are well known and locomotor interpretations based on them are robust. The most complete known skull of a pantolestine, Pantolestes longicaudus (YPM 13525), is described here and compared to potential close fossil relatives and extant mammals. Semicircular canal morphology is used to test locomotor hypotheses. YPM 13525 lacks an ossified bulla. It has a mediolaterally broad basioccipital, a large entoglenoid process, and a deeply incised glaserian fissure of the squamosal, caudal and rostral tympanic processes on the petrosal, a foramen for an internal carotid artery (ICA) that entered the tympanic cavity from a posteromedial position, bony tubes enclosing the main stem and transpromontorial branch of the ICA, a large anterior carotid foramen formed within the basisphenoid, evidence of a stapedial artery ramus superior, a groove on the dorsal aspect of the basisphenoid leading to the piriform fenestra possibly for drainage of the cavernous sinus to an extracranial inferior petrosal sinus, a dorsum sellae with well-developed posterior clinoid processes, a foramen rotundum within the alisphenoid, and a sphenorbital fissure between the alisphenoid and orbitosphenoid. Overall, the morphology is not strikingly similar to any potential close relative and the phylogenetic position of Pantolestinae cannot be estimated without cladistic analysis of a character matrix that includes this new morphology and broadly samples extant and extinct eutherian taxa. Semicircular canal morphology differs from that of two likely terrestrial Paleocene mammals, Aphronorus (another pantolestid) and Eoryctes (a palaeoryctid), suggesting a different, possibly semi-aquatic, lifestyle for Pantolestes.  相似文献   
127.
128.
Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age―relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species.  相似文献   
129.
Objective: Multiple meaningful ecological characterizations of a species revolve around body mass. Because body mass cannot be directly measured in extinct taxa, reliable body mass predictors are needed. Many published body mass prediction equations rely on dental dimensions, but certain skeletal dimensions may have a more direct and consistent relationship with body mass. We seek to evaluate the reliability of prediction equations for inferring euarchontan body mass based on measurements of the articular facet areas of the astragalus and calcaneus. Methods: Surface areas of five astragalar facets (n = 217 specimens) and two calcaneal facets (n = 163) were measured. Separate ordinary least squares and multiple regression equations are presented for different levels of taxonomic inclusivity, and the reliability of each equation is evaluated with the coefficient of determination, standard error of the estimate, mean prediction error, and the prediction sum of squares statistic. We compare prediction errors to published prediction equations that utilize dental and/or tarsal measures. Finally, we examine the effects of taxonomically specific regressions and apply our equations to a diverse set of non‐primates. Results: Our results reveal that predictions based on facet areas are more reliable than most linear dental or tarsal predictors. Multivariate approaches are often better than univariate methods, but require more information (making them less useful for fragmentary fossils). While some taxonomically specific regressions improve predictive ability, this is not true for all primate groups. Conclusions: Among individual facets, the ectal and fibular facets of the astragalus and the calcaneal cuboid facet are the best body mass predictors. Since these facets have primarily concave curvature and scale with positive allometry relative to body mass, it appears that candidate skeletal proxies for body mass can be identified based on their curvature and scaling coefficients. Am J Phys Anthropol 157:472–506, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
130.
We investigate the role of adaptation in a neural field model, composed of ON and OFF cells, with delayed all-to-all recurrent connections. As external spatially profiled inputs drive the network, ON cells receive inputs directly, while OFF cells receive an inverted image of the original signals. Via global and delayed inhibitory connections, these signals can cause the system to enter states of sustained oscillatory activity. We perform a bifurcation analysis of our model to elucidate how neural adaptation influences the ability of the network to exhibit oscillatory activity. We show that slow adaptation encourages input-induced rhythmic states by decreasing the Andronov–Hopf bifurcation threshold. We further determine how the feedback and adaptation together shape the resonant properties of the ON and OFF cell network and how this affects the response to time-periodic input. By introducing an additional frequency in the system, adaptation alters the resonance frequency by shifting the peaks where the response is maximal. We support these results with numerical experiments of the neural field model. Although developed in the context of the circuitry of the electric sense, these results are applicable to any network of spontaneously firing cells with global inhibitory feedback to themselves, in which a fraction of these cells receive external input directly, while the remaining ones receive an inverted version of this input via feedforward di-synaptic inhibition. Thus the results are relevant beyond the many sensory systems where ON and OFF cells are usually identified, and provide the backbone for understanding dynamical network effects of lateral connections and various forms of ON/OFF responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号