首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   37篇
  2024年   3篇
  2023年   3篇
  2022年   5篇
  2021年   15篇
  2020年   5篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   24篇
  2014年   24篇
  2013年   35篇
  2012年   28篇
  2011年   36篇
  2010年   24篇
  2009年   24篇
  2008年   36篇
  2007年   31篇
  2006年   23篇
  2005年   19篇
  2004年   26篇
  2003年   19篇
  2002年   19篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有477条查询结果,搜索用时 15 毫秒
51.
Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors.  相似文献   
52.
53.
54.
HIV-1 Nef disrupts antigen presentation early in the secretory pathway   总被引:4,自引:0,他引:4  
Human immunodeficiency virus, type 1 Nef disrupts viral antigen presentation and promotes viral immune evasion from cytotoxic T lymphocytes. There is evidence that Nef acts early in the secretory pathway to redirect major histocompatibility complex class I (MHC-I) from the trans-Golgi network to the endolysosomal pathway. However, a competing model suggests that Nef acts much later by accelerating MHC-I turnover at the cell surface. Here we demonstrate that Nef targets early forms of MHC-I molecules in the endoplasmic reticulum by preferentially binding hypophosphorylated cytoplasmic tails. The Nef-MHC-I complex migrates normally into the Golgi apparatus but subsequently fails to arrive at the cell surface and become phosphorylated. Cell type-specific differences in the rate of MHC-I transport through the secretory pathway correlate with responsiveness to Nef and co-precipitation of adaptor protein 1 with the Nef.MHC-I complex. We propose that the assembly of a Nef.MHC-I.adaptor protein 1 complex early in the secretory pathway is important for Nef activity.  相似文献   
55.
Laser flash-quench methods have been used to generate tyrosine and tryptophan radicals in structurally characterized rhenium-modified Pseudomonas aeruginosa azurins. Cu(I) to "Re(II)" electron tunneling in Re(H107) azurin occurs in the microsecond range. This reaction is much faster than that studied previously for Cu(I) to Ru(III) tunneling in Ru(H107) azurin, suggesting that a multistep ("hopping") mechanism might be involved. Although a Y108 radical can be generated by flash-quenching a Re(H107)M(II) (M=Cu, Zn) protein, the evidence suggests that it is not an active intermediate in the enhanced Cu(I) oxidation. Rather, the likely explanation is rapid conversion of Re(II)(H107) to deprotonated Re(I)(H107 radical), followed by electron tunneling from Cu(I) to the hole in the imidazole ligand.  相似文献   
56.
Myosin-V is a versatile motor involved in short-range axonal/dendritic transport of vesicles in the actin-rich cortex and synaptic regions of nerve cells. It binds to several different kinds of neuronal vesicles by its globular tail domain but the mechanism by which it is recruited to these vesicles is not known. In this study, we used an in vitro motility assay derived from axoplasm of the squid giant axon to study the effects of the globular tail domain on the transport of neuronal vesicles. We found that the globular tail fragment of myosin-V inhibited actin-based vesicle transport by displacing native myosin-V and binding to vesicles. The globular tail domain pulled down kinesin, a known binding partner of myosin-V, in affinity isolation experiments. These data confirmed earlier evidence that kinesin and myosin-V interact to form a hetero-motor complex. The formation of a kinesin/myosin-V hetero-motor complex on vesicles is thought to facilitate the coordination of long-range movement on microtubules and short-range movement on actin filaments. The direct interaction of motors from both filament systems may represent the mechanism by which the transition of vesicles from microtubules to actin filaments is regulated. These results are the first demonstration that the recombinant tail of myosin-V inhibits vesicle transport in an in vitro motility assay. Future experiments are designed to determine the functional significance of the interaction between myosin-V and kinesin and to identify other proteins that bind to the globular tail domain of myosin-V.  相似文献   
57.
The large-conductance, Ca2+-activated K+ (BK) channels are regulators of voltage-dependent Ca2+ entry in many cell types. The BK channel accessory beta1-subunit promotes channel activation in smooth muscle and is required for proper tone in the vasculature and bladder. However, although BK channels have also been implicated in airway smooth muscle function, their regulation by the beta1-subunit has not been investigated. Utilizing the gene-targeted mice for the beta1-subunit gene, we have investigated the role of the beta1-subunit in tracheal smooth muscle. In mice with the beta1-subunit-knockout allele, BK channel activity was significantly reduced in excised tracheal smooth muscle patches and spontaneous BK currents were reduced in whole tracheal smooth muscle cells. Knockout of the beta1-subunit resulted in an increase in resting Ca2+ levels and an increase in the sustained component of Ca2+ influx after cholinergic signaling. Tracheal constriction studies demonstrate that the level of constriction is the same with knockout of the beta1-subunit and BK channel block with paxillin, indicating that BK channels contribute little to airway relaxation in the absence of the beta1-subunit. Utilizing nifedipine, we found that the increased constriction caused by knockout of the beta1-subunit could be accounted for by an increased recruitment of L-type voltage-dependent Ca2+ channels. These results indicate that the beta1-subunit is required in airway smooth muscle for control of voltage-dependent Ca2+ influx during rest and after cholinergic signaling in BK channels.  相似文献   
58.
59.
60.
Utilizing the structure–activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90’s binding with client proteins. Finally, we demonstrate that we have integrated good ADME properties into a new derivative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号