首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   101篇
  2023年   4篇
  2022年   11篇
  2021年   19篇
  2020年   6篇
  2019年   11篇
  2018年   16篇
  2017年   14篇
  2016年   19篇
  2015年   36篇
  2014年   33篇
  2013年   59篇
  2012年   57篇
  2011年   68篇
  2010年   37篇
  2009年   36篇
  2008年   52篇
  2007年   53篇
  2006年   42篇
  2005年   31篇
  2004年   40篇
  2003年   35篇
  2002年   36篇
  2001年   16篇
  2000年   14篇
  1999年   12篇
  1998年   8篇
  1997年   9篇
  1996年   13篇
  1995年   7篇
  1994年   5篇
  1993年   11篇
  1992年   11篇
  1991年   15篇
  1990年   22篇
  1989年   16篇
  1988年   16篇
  1986年   22篇
  1985年   17篇
  1984年   12篇
  1983年   13篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   12篇
  1978年   8篇
  1977年   8篇
  1974年   4篇
  1973年   5篇
  1968年   3篇
  1964年   3篇
排序方式: 共有1043条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   
75.
Peng  Chang-Lian  Duan  Jun  Lin  Guizhu  Gilmore  A.M. 《Photosynthetica》2002,40(4):503-508
We compared photoinhibition sensitivity to high irradiance (HI) in wild-type barley (wt) and both its chlorina f 104-nuclear gene mutant, that restricts chlorophyll (Chl) a and Chl b synthesis, and its f 2-nuclear gene mutant, that inhibits all Chl b synthesis. Both Fv/Fm and PS2 decreased more significantly in f 2 than f 104 and wt with duration of HI exposure. Chl degraded more rapidly in the f 2 than in either f 104 or wt. Most sensitivity to photoinhibition was exhibited for f 2, whereas there was little difference in response to HI between the f 104 and wt. The highest de-epoxidation (DES) value at every time point of exposure to HI was measured for f 2, whereas the wt had the lowest value among the three strains. There were two lifetime components resolved for the conversion of violaxanthin (V) to zeaxanthin plus antheraxanthin (Z + A). The most rapid lifetime was around 6 min and the slower lifetime was >140 min, in both the mutants and wt. However, the wt and f 104 both displayed larger amplitudes of both de-epoxidation lifetimes than f 2. The difference between the final de-epoxidation state (DES = [Z + A]/[V + A + Z]) in the light compared to the dark expressed as DES for wt, f 104, and f 2 was 0.630, 0.623, and 0.420, respectively. The slow lifetime component and overall larger DES in the wt and f 104 correlated with more photoprotection, as indicated by relatively higher Fv/Fm and PS2, compared to the f 2. Hence the photoprotection against photoinhibition has no relationship with the absolute DES value, but there is a strong relationship with de-epoxidation rate and relative extent or DES.  相似文献   
76.
Genomics projects have resulted in a flood of sequence data. Functional annotation currently relies almost exclusively on inter-species sequence comparison and is restricted in cases of limited data from related species and widely divergent sequences with no known homologs. Here, we demonstrate that codon composition, a fusion of codon usage bias and amino acid composition signals, can accurately discriminate, in the absence of sequence homology information, cytoplasmic ribosomal protein genes from all other genes of known function in Saccharomyces cerevisiae, Escherichia coli and Mycobacterium tuberculosis using an implementation of support vector machines, SVM(light). Analysis of these codon composition signals is instructive in determining features that confer individuality to ribosomal protein genes. Each of the sets of positively charged, negatively charged and small hydrophobic residues, as well as codon bias, contribute to their distinctive codon composition profile. The representation of all these signals is sensitively detected, combined and augmented by the SVMs to perform an accurate classification. Of special mention is an obvious outlier, yeast gene RPL22B, highly homologous to RPL22A but employing very different codon usage, perhaps indicating a non-ribosomal function. Finally, we propose that codon composition be used in combination with other attributes in gene/protein classification by supervised machine learning algorithms.  相似文献   
77.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   
78.
Successful cryopreservation requires cells to tolerate volume excursions experienced during permeating cryoprotectant equilibration and during cooling and warming. However, prior studies have demonstrated that mouse spermatozoa are extremely sensitive to osmotically induced volume changes. A series of three experiments were conducted 1) to test the efficacy of two commonly used extender media components, egg yolk (EY) and skim milk (SM), in broadening the osmotic tolerance limits (OTL) of ICR and B6C3F1 murine spermatozoa; 2) to determine if the extender components affected sperm plasma membrane permeability coefficients for water and cryoprotective agent (CPA) characteristics; and 3) to test the effects of permeating and nonpermeating CPA on mouse sperm morphology. In experiment 1, sperm samples were added to 150, 225, 300, 450, or 600 mOsm NaCl, EY, SM, sucrose, or choline chloride at 22 degrees C and then returned to isosmotic conditions. In experiment 2, epididymal sperm were preequilibrated in 1 M glycerol (Gly) or 2 M ethylene glycol (EG) prepared in SM extender, abruptly exposed to isosmotic conditions at 22, 15, or 2 degrees C, and the corresponding volume excursions were measured and analyzed. In experiment 3, the effects of permeating CPA (0.3 M EG or dimethyl sulfoxide) or nonpermeating CPA (12% sucrose or 18% raffinose) on sperm morphology (i.e., principle midpiece folding and putative membrane fusion) were evaluated. Experiment 1 showed that spermatozoa from ICR and B6C3F1 mice have effectively broader OTL when exposed to EY or SM extenders. The results of experiment 2 indicated that, for ICR sperm, the activation energy (E(a)) for the hydraulic conductivity (L(p)) was unchanged in SM extender. However, for B6C3F1 sperm, there were significant differences in E(a) of L(p) in the presence of Gly and EG. The result of experiment 3 indicated that permeating CPAs damage sperm membrane integrity, causing a high frequency of head-to-tail or tail-to-tail membrane fusion, whereas this occurrence in the presence of nonpermeating CPA was less than 3%. Finally, the results of experiments 1 and 2 were combined in a mathematical model to predict Gly and EG addition and removal in the presence of SM extender, which would prevent mouse sperm membrane damage. These predictions indicated that, for ICR sperm, both Gly and EG may be added and removed in a single step. However, for B6C3F1 spermatozoa, Gly required a two-step addition while EG only required a single step. For removal from B6C3F1 sperm, Gly required a three-step removal process while EG required a two-step removal.  相似文献   
79.
Oligosaccharyltransferase (OST) is an integral membrane protein that catalyzes N-linked glycosylation of nascent proteins in the lumen of the endoplasmic reticulum. Although the yeast OST is an octamer assembled from nonhomologous subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Wbp1p, Swp1p, and Stt3p), the composition of the vertebrate OST was less well defined. The roles of specific OST subunits remained enigmatic. Here we show that genomes of most multicellular eukaryotes encode two homologs of Stt3p and mammals express two homologs of Ost3p. The Stt3p and Ost3p homologs are assembled together with the previously described mammalian OST subunits (ribophorins I and II, OST48, and DAD1) into complexes that differ significantly in enzymatic activity. Tissue and cell type-specific differences in expression of the Stt3p homologs suggest that the enzymatic properties of oligosaccharyltransferase are regulated in eukaryotes to respond to alterations in glycoprotein flux through the secretory pathway and may contribute to tissue-specific glycan heterogeneity.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号