首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   28篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   19篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   7篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   8篇
  1990年   6篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有261条查询结果,搜索用时 62 毫秒
151.
We present an example of how an invasion by a non-native cyprinid (common bream, Abramis brama (Pisces: Cyprinidae), hereafter bream) in a natural shallow lake in southern Europe (Lake Montorfano, northern Italy) may have adversely affected the state of the lake’s ecosystem. In less than two decades, bream became the most abundant species and characterized by a stunted population with asymptotic length 33.5 cm, an estimated mean length at first maturity of 19.6 cm, a total mortality rate of 0.64 year?1 and a diet overwhelmingly dominated by microcrustaceans. Following bream establishment, nutrients and phytoplankton biomass rose, the proportion of Cyanobacteria by numbers increased markedly and water transparency decreased. Total zooplankton abundance increased with a marked increase in small cladocerans and copepods, whereas the abundance of large herbivorous cladocerans did not change. The coverage of submerged macrophytes declined, as did the abundance of native pelagic zooplanktivorous fish. The composition of the fish community shifted towards a higher proportion of zoobenthivorous species, such as bream and pumpkinseed (Lepomis gibbosus). Our results indicate that bream affected water quality through bottom-up mechanisms, while top-down effects were comparatively weak. Selective removal of bream and perhaps stocking of native piscivores might improve the ecological status of the lake.  相似文献   
152.
Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function.  相似文献   
153.
In order to establish a fish-based typology of Italian lakes and identify possible reference and indicator fish species for each lake type, we analysed historical data on fish assemblages of all Italian natural lakes >0.5 km2 from the period prior to the major decline in water quality in the 1950s. General linear regression models showed the ecoregion and lake altitude being the best predictors of fish species richness. The number of species was significantly higher in the Alpine than in the Mediterranean ecoregion. Among Alpine lakes, the number of fish species increased significantly with lake volume whilst decreased with altitude. In the Mediterranean lakes, none of the selected parameters was significant. Cluster analysis of fish assemblages (presence/absence) divided the lakes of the Alpine and Mediterranean ecoregions into four and two types, respectively. Pike (Esox lucius), rudd (Scardinius erythrophthalmus) and tench (Tinca tinca) were the main indicator species for the small and mostly shallow lakes in both the Alpine (Type 1) and Mediterranean (Type 6) ecoregions, minnow (Phoxinus phoxinus) for the alpine high altitude lakes (Type 2) and landlocked shad (Alosa fallax lacustris), European whitefish (Coregonus lavaretus) and burbot (Lota lota) for the large and very deep alpine lakes (Type 4). The European whitefish was the only indicator species for the deep Mediterranean lakes (Type 5). These species and associated fish assemblages may be useful indicators in future assessments of the ecological status of Italian lakes according to the European Directives (2000/60/EC and 2008/105/EC).  相似文献   
154.
Information on the effects of water level changes on microbial planktonic communities in lakes is limited but vital for understanding ecosystem dynamics in Mediterranean lakes subjected to major intra- and inter-annual variations in water level. We performed an in situ mesocosm experiment in an eutrophic Turkish lake at two different depths crossed with presence/absence of fish in order to explore the effects of water level variations and the role of top-down regulation at contrasting depths. Strong effects of fish were found on zooplankton, weakening through the food chain to ciliates, HNF and bacterioplankton, whereas the effect of water level variations was overall modest. Presence of fish resulted in lower biomass of zooplankton and higher biomasses of phytoplankton, ciliates and total plankton. The cascading effects of fish were strongest in the shallow mesocosms as evidenced by a lower zooplankton contribution to total plankton biomass and lower zooplankton:ciliate and HNF:bacteria biomass ratios. Our results suggest that a lowering of the water level in warm shallow lakes will enhance the contribution of bacteria, HNF and ciliates to the plankton biomass, likely due to increased density of submerged macrophytes (less phytoplankton); this effect will, however, be less pronounced in the presence of fish.  相似文献   
155.
156.
Book Review     
  相似文献   
157.
Daphnids undergoing diel horizontal migration (DHM) to seek daytime refuge in the littoral zones of shallow lakes are likely to confront chemical cues from littoral-associated predators and macrophytes. In field experiments, we investigated how the natural suite of chemicals occurring in a wholly vegetated lake as well as within plant-free mesocosms with artificial macrophytes and epiphytes (either fishless or containing small fish) influenced individual daphnid growth. In laboratory experiments, we further examined how water containing chemicals from either a submerged macrophyte (waterweed, Elodea canadensis ), a planktivorous fish (roach, Rutilus rutilus ) or both impacted daphnid growth and life-history traits. In the field, we found the greatest suppression of daphnid growth in vials containing water from the wholly vegetated lake relative to growth of daphnids housed in vials containing spring water. Water from the mesocosm with fish also suppressed daphnid growth. Daphnid growth in water from the fishless mesocosm, which contained plastic plants colonized by epiphytes, did not differ from that of daphnids grown in spring water. In the lab experiment, daphnids exposed to Elodea chemicals took longer to mature and possessed fewer eggs than daphnids in media without Elodea chemicals. Daphnids exposed to chemicals from both Elodea and roach reproduced the earliest and at a smaller size. Daphnids exposed to only roach chemical cues did not significantly differ from daphnids in control media for age or size at first reproduction although they did possess fewer eggs. Daphnia responses to chemicals from either roach or Elodea alone did not predict how Daphnia responded to the combined influence of multiple chemical cues. Our results suggest that prolonged exposure to macrophyte chemicals incurs costs for Daphnia .  相似文献   
158.
159.
Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (<30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号