首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   17篇
  191篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   13篇
  2014年   8篇
  2013年   11篇
  2012年   18篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   16篇
  2007年   7篇
  2006年   15篇
  2005年   16篇
  2004年   9篇
  2003年   10篇
  2002年   9篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1984年   1篇
排序方式: 共有191条查询结果,搜索用时 0 毫秒
151.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   
152.
153.
Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro- and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.  相似文献   
154.
Comment on: Rafn B, et al. Mol Cell 2012; 45:764-76.  相似文献   
155.
156.
The mechanism of allosteric activation of alpha-amylase by chloride has been studied through structural and kinetic experiments focusing on the chloride-dependent N298S variant of human pancreatic alpha-amylase (HPA) and a chloride-independent TAKA-amylase. Kinetic analysis of the HPA variant clearly demonstrates the pronounced activating effect of chloride ion binding on reaction rates and its effect on the pH-dependence of catalysis. Structural alterations observed in the N298S variant upon chloride ion binding suggest that the chloride ion plays a variety of roles that serve to promote catalysis. One of these is having a strong influence on the positioning of the acid/base catalyst residue E233. Absence of chloride ion results in multiple conformations for this residue and unexpected enzymatic products. Chloride ion and N298 also appear to stabilize a helical region of polypeptide chain from which projects the flexible substrate binding loop unique to chloride-dependent alpha-amylases. This structural feature also serves to properly orient the catalytically essential residue D300. Comparative analyses show that the chloride-independent alpha-amylases compensate for the absence of bound chloride by substituting a hydrophobic core, altering the manner in which substrate interactions are made and shifting the placement of N298. These evolutionary differences presumably arise in response to alternative operating environments or the advantage gained in a particular product profile. Attempts to engineer chloride-dependence into the chloride-independent TAKA-amylase point out the complexity of this system, and the fact that a multitude of factors play a role in binding chloride ion in the chloride-dependent alpha-amylases.  相似文献   
157.
Modern intensive husbandry practices can create poor indoor air quality, with high levels of airborne dust, endotoxins, ammonia, and microorganisms. Air in a sow breeding barn was investigated to determine the biomass composition of bioaerosols using molecular methods supplemented with microscopic and cultivation-dependent approaches. A total of 2.7?±?0.7?×?10(7) bacterial cells?m(-3) air and 1.2?±?0.3?×?10(6) fungi spores?m(-3) were detected, corresponding to the fungal biovolume constituted 98% of the total microbial biovolume (fungal and bacterial). Fifty-two percent of all 4',6-diamidino-2-phenyl indole-stained cells were detectable with fluorescence in situ hybridization (FISH) with a general bacterial probe mixture. Quantitative FISH of the bacterial consortium revealed Firmicutes as the dominant group with Streptococcus as the major genus, while Actinobacteria constituted 10% of the detectable bacteria. Additionally, the study revealed an abundant and diverse fungal community including species not previously found in similar environments. The most abundant fungal 18S rRNA gene clone sequences identified affiliated with the Aspergillus-Eurotium cluster, but among others, species of Wallemia, Mucorales, and Russulales were detected. For both fungi and anaerobic bacteria, a hitherto undescribed diversity was found in bioaerosols from a modern sow breeding barn, which potentially could create poor indoor air quality, although their effect on the health of farmworkers and stock still is not resolved.  相似文献   
158.
Three microscopic in situ techniques were used simultaneously to investigate viability and activity on a single-cell level in activated sludge. The redox dye 5-cyano-2,3-tolyl-tetrazolium chloride (CTC) was compared with microautoradiography (MAR) and fluorescence in situ hybridization (FISH) to indicate activity of cells in Thiothrix filaments and in single floc-forming bacteria. The signals from MAR and FISH correlated well, whereas only 65% of the active Thiothrix cells and 41% of all single cells were detectable by CTC reduction, which mainly targeted the most active cells.  相似文献   
159.
The efficiency of removing unwanted biofilm from surfaces in industrial water systems was examined by fluorescence microscopy and image analysis. A quantitative assay for in situ determination of biofilm components was developed and tested on thin biofilms grown in reactors as well as real biofilms sampled from a fish processing factory. Different fluorescent dyes for in situ detection of protein, lipid and total organic matter were tested. It was possible to determine the approximate amounts, concentrations and coverage of the different components by correlating the fluorescent intensity of the biofilm components to standard solutions immobilised as a biofilm. The quantification methods were evaluated as a strategy for determining the efficiency of different disinfection/cleaning procedures, showing that quantification of these biofilm components was fast and reliable for optimisation of cleaning in place procedures. However, the approach also showed that bacterial cells, as investigated by culture-independent procedures, were killed but not removed by most disinfection procedures tested, potentially leading to surfaces which are easily recolonised.  相似文献   
160.
In this publication we describe a peptide insulin receptor antagonist, S661, which is a single chain peptide of 43 amino acids. The affinity of S661 for the insulin receptor is comparable to that of insulin and the selectivity for the insulin receptor versus the IGF-1 receptor is higher than that of insulin itself. S661 is also an antagonist of the insulin receptor of other species such as pig and rat, and it also has considerable affinity for hybrid insulin/IGF-1 receptors. S661 completely inhibits insulin action, both in cellular assays and in vivo in rats. A biosynthetic version called S961 which is identical to S661 except for being a C-terminal acid seems to have properties indistinguishable from those of S661. These antagonists provide a useful research tool for unraveling biochemical mechanisms involving the insulin receptor and could form the basis for treatment of hypoglycemic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号