首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   40篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   8篇
  2013年   18篇
  2012年   22篇
  2011年   16篇
  2010年   10篇
  2009年   9篇
  2008年   20篇
  2007年   12篇
  2006年   23篇
  2005年   22篇
  2004年   18篇
  2003年   18篇
  2002年   17篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有315条查询结果,搜索用时 46 毫秒
91.
92.
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS.  相似文献   
93.
Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef’s vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180° as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation.  相似文献   
94.
Cu(II) ions are implicated in the pathogenesis of Alzheimer disease by influencing the aggregation of the amyloid-β (Aβ) peptide. Elucidating the underlying Cu(II)-induced Aβ aggregation is paramount for understanding the role of Cu(II) in the pathology of Alzheimer disease. The aim of this study was to characterize the qualitative and quantitative influence of Cu(II) on the extracellular aggregation mechanism and aggregate morphology of Aβ(1-40) using spectroscopic, microelectrophoretic, mass spectrometric, and ultrastructural techniques. We found that the Cu(II):Aβ ratio in solution has a major influence on (i) the aggregation kinetics/mechanism of Aβ, because three different kinetic scenarios were observed depending on the Cu(II):Aβ ratio, (ii) the metal:peptide stoichiometry in the aggregates, which increased to 1.4 at supra-equimolar Cu(II):Aβ ratio; and (iii) the morphology of the aggregates, which shifted from fibrillar to non-fibrillar at increasing Cu(II):Aβ ratios. We observed dynamic morphological changes of the aggregates, and that the formation of spherical aggregates appeared to be a common morphological end point independent on the Cu(II) concentration. Experiments with Aβ(1-42) were compatible with the conclusions for Aβ(1-40) even though the low solubility of Aβ(1-42) precluded examination under the same conditions as for the Aβ(1-40). Experiments with Aβ(1-16) and Aβ(1-28) showed that other parts than the Cu(II)-binding His residues were important for Cu(II)-induced Aβ aggregation. Based on this study we propose three mechanistic models for the Cu(II)-induced aggregation of Aβ(1-40) depending on the Cu(II):Aβ ratio, and identify key reaction steps that may be feasible targets for preventing Cu(II)-associated aggregation or toxicity in Alzheimer disease.  相似文献   
95.
NaHCO(3) transporters are involved in maintenance of intracellular pH and transepithelial HCO(3)(-) movement in many rodent tissues. To establish the human relevance of the many investigations on rodents, this study aimed to map these transporters and a related polypeptide, NaBC1 [solute carrier 4 (SLC4)A11], to several human tissues by using PCR on reverse transcribed human mRNA and immunoperoxidase histochemistry. The mRNA encoding the electroneutral Na(+):HCO(3)(-) cotransporter (NBCe1; SLC4A4), was expressed in renal cortex, renal medulla, stomach, duodenum, jejunum, ileum, colon, pancreas, choroid plexus, cerebellum, cerebrum, and hippocampus. NBCe2 (SLC4A5) and NBCn1 (SLC4A7) mRNAs were mainly found in kidney and brain tissues, as was mRNA encoding the Na(+)-dependent anion exchangers NCBE (SLC4A10) and NDCBE1 (SLC4A8). In addition to previous findings, NBCn1 protein was localized to human renal medullary thick ascending limbs and duodenal epithelial villus cells and NBCe2 protein to renal collecting ducts. Finally, the message encoding NaBC1 was found in kidney, stomach, duodenum, pancreas, and brain, and the corresponding protein in the anterior and posterior corneal epithelia, renal corpuscules, proximal tubules, collecting ducts, pancreatic ducts, and the choroid plexus epithelium. In conclusion, the selected human tissues display distinct expression patterns of HCO(3)(-) transporters, which closely resemble that of rodent tissues.  相似文献   
96.
Increasing incidences of activated sludge foaming have been reported in the last decade in Danish plants treating both municipal and industrial wastewaters. In most cases, foaming is caused by the presence of Actinobacteria; branched mycolic acid-containing filaments (the Mycolata) and the unbranched Candidatus'Microthix parvicella'. Surveys from wastewater treatment plants revealed that the Mycolata were the dominant filamentous bacteria in the foam. Gordonia amarae-like organisms and those with the morphology of Skermania piniformis were frequently observed, and they often coexisted. Their identity was confirmed by FISH, using a new permeabilization procedure. It was not possible to identify all abundant Mycolata using existing FISH probes, which suggests the presence of currently undetectable and potentially undescribed populations. Furthermore, some Mycolata failed to give any FISH signal, although substrate uptake experiments with microautoradiography revealed that they were physiologically active. Ecophysiological studies were performed on the Mycolata identified by their morphology or FISH in both foams and mixed liquors. Large differences were seen among the Mycolata in levels of substrate assimilation and substrate uptake abilities in the presence of different electron acceptors. These differences were ascribed mainly to the presence of currently undescribed Mycolata species and/or differences in foam age.  相似文献   
97.
Reports of the chlorophyll (Chl) d-containing cyanobacterium Acaryochloris have accumulated since its initial discovery in 1996. The majority of this evidence is based on amplification of the gene coding for the 16S rRNA, and due to the wide geographical distribution of these sequences, a global distribution of Acaryochloris species was suggested. Here, we present a rapid, reliable, and cost-effective TaqMan-based quantitative PCR (qPCR) assay that was developed for the specific detection of Acaryochloris species in complex environmental samples. The TaqMan probe showed detection limits of ∼10 16S rRNA gene copy numbers based on standard curves consisting of plasmid inserts. DNA from five Acaryochloris strains, i.e., MBIC11017, CCMEE5410, HICR111A, CRS, and Awaji-1, exhibited amplification efficiencies of >94% when tested in the TaqMan assay. When used on complex natural communities, the TaqMan assay detected the presence of Acaryochloris species in four out of eight samples of crustose coralline algae (CCA), collected from temperate and tropical regions. In three out of these TaqMan-positive samples, the presence of Chl d was confirmed via high-performance liquid chromatography (HPLC), and corresponding cell estimates of Acaryochloris species amounted to 7.6 × 101 to 3.0 × 103 per mg of CCA. These numbers indicate a substantial contribution of Chl d-containing cyanobacteria to primary productivity in endolithic niches. The new TaqMan assay allows quick and easy screening of environmental samples for the presence of Acaryochloris species and is an important tool to further resolve the global distribution and significance of this unique oxyphototroph.  相似文献   
98.
Bendtsen KM  Juul J  Trusina A 《PloS one》2012,7(5):e36018
DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders.  相似文献   
99.
Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.  相似文献   
100.
Steroid hormones such as 17β-estradiol (E2) are known to modulate ion transporter expression in the kidney through classic intracellular receptors. Steroid hormones are also known to cause rapid nongenomic responses in a variety of nonrenal tissues. However, little is known about renal short-term effects of steroid hormones. Here, we studied the acute actions of E2 on intracellular Ca(2+) signaling in isolated distal convoluted tubules (DCT2), connecting tubules (CNT), and initial cortical collecting ducts (iCCD) by fluo 4 fluorometry. Physiological concentrations of E2 induced transient increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subpopulation of cells. The [Ca(2+)](i) increases required extracellular Ca(2+) and were inhibited by Gd(3+). Strikingly, the classic E2 receptor antagonist ICI 182,780 also increased [Ca(2+)](i), which is inconsistent with the activation of classic E2 receptors. G protein-coupled estrogen receptor 1 (GPER1 or GPR30) was detected in microdissected DCT2/CNT/iCCD by RT-PCR. Stimulation with the specific GPER1 agonist G-1 induced similar [Ca(2+)](i) increases as E2, and in tubules from GPER1 knockout mice, E2, G-1, and ICI 182,780 failed to induce [Ca(2+)](i) elevations. The intercalated cells showed both E2-induced concanamycin-sensitive H(+)-ATPase activity by BCECF fluorometry and the E2-mediated [Ca(2+)](i) increment. We propose that E2 via GPER1 evokes [Ca(2+)](i) transients and increases H(+)-ATPase activity in intercalated cells in mouse DCT2/CNT/iCCD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号