首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   40篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   8篇
  2013年   18篇
  2012年   22篇
  2011年   16篇
  2010年   10篇
  2009年   9篇
  2008年   20篇
  2007年   12篇
  2006年   23篇
  2005年   22篇
  2004年   18篇
  2003年   18篇
  2002年   17篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
111.
Northern forest ecosystems are projected to experience warmer growing seasons and increased soil freeze–thaw cycles in winter over the next century. Past studies show that warmer soils in the growing season enhance nitrogen uptake by plants, while soil freezing in winter reduces plant uptake and ecosystem retention of nitrogen, yet the combined effects of these changes on plant root capacity to take up nitrogen are unknown. We conducted a 2-year (2014–2015) experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to characterize the response of root damage, nitrogen uptake capacity, and soil solution nitrogen to growing season warming combined with soil freeze–thaw cycles in winter. Winter freeze–thaw cycles damaged roots, reduced nitrogen uptake capacity by 42%, and increased soil solution ammonium in the early growing season (May–June). During the peak growing season (July), root nitrogen uptake capacity was reduced 40% by warming alone and 49% by warming combined with freeze–thaw cycles. These results indicate the projected combination of colder soils in winter and warmer soils in the snow-free season will alter root function by reducing root nitrogen uptake capacity and lead to transient increases of nitrogen in soil solution during the early growing season, with the potential to alter root competition for soil nitrogen and seasonal patterns of soil nitrogen availability. We conclude that considering interactive effects of changes in climate during winter and the snow-free season is essential for accurate determination of the response of nitrogen cycling in the northern hardwood forest to climate change.  相似文献   
112.
Synopsis Three observed dynamic aspects of the Nile tilapia population around Ferguson's Gulf at Lake Turkana, Kenya are evaluated and discussed: the seasonality in catch rates, the enormous inter-annual abundance variations, and the large changes in median size at first maturity. A clear understanding of the regulating mechanisms behind these features has never been achieved, although seasonal changes in the hydrology of shallow sheltered refuges seems to play an important role. This paper suggests a further holistic approach taking the impacts and interrelationships of both the primary productivity and the various predators into account. A synthesizing ecological hypothesis is elaborated, which concludes that most observations on the tilapia dynamics can be explained from changes in the oxygen concentrations and size-specific mortality pressures. Variations in these two proximate factors can ultimately be explained by the floodplain-type fluctuations in the Ferguson's Gulf environment.  相似文献   
113.
The phase transition behavior of a lipid bilayer of dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3- phosphatidylcholine (DMPC-d54/DSPC) (1:1) on a solid support with varying curvatures was investigated with differential scanning calorimetry, infrared spectroscopy, and model calculations. With increasing curvature the temperatures of the liquidus and solidus points are shifted to lower values by up to 7 degrees C and 15 degrees C, and the mixing of the two lipid species in the two phase region is altered. With increasing curvature the DSPC dominates the gel phase, whereas the DMPC-d54 is expelled to the fluid phase. Whereas the planar system shows a nearly simultaneous phase transition of DSPC and DMPC-d54, the spherical system with the highest curvature exhibits an almost complete separation of the phase transitions of the two lipids. Model calculations suggest that the shift of the liquidus point can be understood as a reduction of the lateral pressure in the bilayer with increasing curvature. The shift of the solidus line is interpreted as a result of the increased demixing of the two components in the two-phase region with increasing curvature due to lowering of the lateral pressure.  相似文献   
114.
An extensive computer-simulation study is performed on a simple but general molecular model recently proposed (J?rgensen et al. (1991) Biochem. Biophys. Acta 1062, 277-238) to describe foreign molecules interacting with lipid bilayers. The model is a multi-state lattice model of the main bilayer transition in which the foreign molecules are assumed to intercalate at interstitial lattice positions. Specific as well as non-specific interactions between the foreign molecules and the lipid acyl chains are considered. Particular attention is paid to the fluctuating properties of the membrane and how the presence of the foreign molecules modulates these fluctuations in the transition region. By means of computer-stimulation techniques, a detailed account is given of the macroscopic as well as microscopic consequences of the fluctuations. The macroscopic consequences of the fluctuations are seen in the thermal anomalies of the specific heat and the passive trans-membrane permeability. Microscopically, the fluctuations manifest themselves in lipid-domain formation in the transition region which implies an effective dynamic membrane heterogeneity. Within the model it is found that certain anaesthetics and insecticides which are characterised by specific interactions with the lipids have a strong effect on the heterogeneity of the membrane inducing regions of locally very high concentration of the foreign molecules. This leads to a broadening of the specific heat peak and a maximum in the membrane/water partition coefficient. These results are in accordance with available experimental data for volatile general anaesthetics like halothane, local anaesthetics like cocain derivatives, and insecticides like lindane.  相似文献   
115.
A microscopic interaction model for a fully hydrated lipid bilayer membrane containing cholesterol is used to calculate, as a function of temperature and composition, the membrane area, the membrane hydrophobic thickness, and the average acyl-chain orientational order parameter, S. The order parameter, S, is related to the first moment, M1, of the quadrupolar magnetic resonance spectrum which can be measured for lipids with perdeuterated chains. On the basis of these model calculations as well as recent experimental measurements of M1 using magnetic resonance and of membrane area using micromechanical measurements, a discussion of the possible relationships between membrane area, hydrophobic thickness, and moments of nuclear magnetic resonance spectra is presented. It is pointed out that S under certain circumstances may be useful for estimating the hydrophobic membrane thickness. This is particularly advantageous for multicomponent membranes where structural data are difficult to obtain by using diffraction techniques. The usefulness of the suggested relationships is demonstrated for cholesterol-containing bilayers.  相似文献   
116.
Occurrence of the odours geosmin and 2-methylisoborneol (MIB) in freshwater environments indicates that odour-producing organisms are commonly occurring. In the present study, we assumed actinomycetes to be a major source of the odours. Seasonal concentrations of odours and abundance of Actinobacteria, which includes actinomycetes and other G+ and high GC bacteria, were determined in one oligotrophic and two eutrophic freshwater streams, as well as in aquacultures connected to these streams, in Denmark. Concentrations of geosmin and MIB ranged from 2 to 9 ng l(-1) and were lowest in the winter. Passage of stream water in the aquacultures increased the amount of geosmin and MIB by up to 55% and 110%, respectively. Densities of actinobacteria were determined by fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) technique and were found to make up from 4 to 38 x 10(7) cells l(-1), corresponding to 3-9% of the total bacterial populations. The lowest densities of actinobacteria occurred in the winter. Filamentous bacteria targeted by the FISH probe made up about 2.7-38% (average was 22%) of the actinobacteria and were expected to be actinomycetes. Combined microautoradiography and CARD-FISH demonstrated that 10-38% (incorporation of 3H-thymidine) and 41-65% (incorporation of 3H-leucine) of the actinobacteria were metabolically active. The proportion of active actinobacteria increased up to 2-fold during passage of stream water in the aquacultures, and up to 98% of the cells became active. Sequencing of 16S rRNA genes in 8 bacterial isolates with typical actinomycete morphology from the streams and ponds demonstrated that most of them belonged to the genus Streptomyces. The isolated actinomycetes produced geosmin at rates from 0.1 to 35 aggeosmin bacterium(-1)h(-1). MIB was produced at similar rates in 5 isolates, whereas no MIB was produced by three of the isolates. Addition of the odours to stream water demonstrated that indigenous stream bacteria were capable of reducing the odours, and that enrichment with LB medium stimulated the degradation. Our study shows that bacterial communities in freshwater include geosmin- and MIB-producing actinobacteria. However, the mechanisms controlling production as well as degradation of the odours in natural waters appear complex and require further research.  相似文献   
117.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   
118.
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.  相似文献   
119.
Mouritsen  Kim N.  Jensen  Tomas  Jensen  K. Thomas 《Hydrobiologia》1997,355(1-3):61-70
The phenology of microphallid trematodes within their intermediate hostpopulations has been studied on an intertidal mud flat. The parasites usethe mud snail Hydrobia ulvae and the infaunal amphipod Corophium volutatoras first and secondary intermediate host, respectively. Migratory shorebirdsact as final hosts. Our results show a general trend of decline in thedensity of infected intermediate hosts during both spring and autumn, whichcould mainly be ascribed to shorebird predation. During summer the densityof both infected snails and infected amphipods increased considerably, witha culmination in June within the snail population (1000 infectedm-2 and in August within the amphipod population (40 000infected m-2. This time lag in parasite occurrence could berelated to (1) the development time of larval trematodes within the snails,(2) higher ambient temperatures in late summer increasing parasitetransmission between snails and amphipods during this period, and (3) ageneral increase in the Corophium population during late summer. Fromsamples collected between 1990 and 1995 it is shown that microphallidtrematodes occasionally may give rise to mass mortality in the amphipodpopulation. The prerequisites for such an event are a high parasiteprevalence within the first intermediate host population and unusually highambient temperatures, facilitating parasite transmission to the secondaryintermediate host, C. volutator.  相似文献   
120.
The temperature dependence of the small-angle neutron scattering from aqueous multilammellar DMPC lipid bilayers, containing small amounts of cholesterol, is analyzed near the main phase transition by means of a simple geometric model which yields the lamellar repeat distance, the hydrophobic thickness of the bilayer, the interlamellar aqueous spacing, as well as fluctuation parameters. The observation of anomalous swelling behavior in the transition region is interpreted as an indication of bilayer softening and thermally reduced bending rigidity. Our results indicate that the effect of small amounts of cholesterol, ≲3 mole%, is a softening of the bilayers in the transition region, whereas cholesterol contents above this range lead to the well-known effect of rigidification. The possible biological relevance of this result is discussed. Received: 24 October 1996 / Accepted: 9 December 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号