首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   6篇
  70篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   11篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2002年   3篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
11.
In recent decades, the glaciers on the Antarctic Peninsula have been rapidly retreating. Using satellite images taken during the austral summer from 1989 to 2016, we estimated the glacier pattern on King George Island in the Antarctic Peninsula, Antarctica, and found that glacier boundaries have gradually retreated. We have recorded the kelp gull nest sites in this glacier-retreat region during four breeding seasons (from 2012–2013 to 2015–2016). Satellite images and newly established kelp gull nests suggest that glacier retreat could lead to an enlarged breeding habitat for kelp gulls.  相似文献   
12.
We evaluated the extent of shrinkage in body size of juvenile marbled sole Pseudopleuronectes yokohamae after preservation in 70% ethanol for 6, 12, 24, or 48 h, or 4 weeks. Standard length (SL, range of the analyzed specimens: 22.82–53.01 mm) decreased by 5.6% after 12 h and body weight (BW 0.174–2.964 g) decreased 27.8% after 24 h preservation in 70% ethanol. There was no further decrease in SL or BW after 12 or 24 h of preservation, respectively. The original body size could be estimated based on the size after preservation in 70% ethanol for 4 weeks using the following equations: SL original = 1.05 SL preserved + 0.37 and BW original = 1.36 BW preserved + 0.04. The condition factor calculated using the body size of preserved individuals was 16.0 and 15.8% lower than that calculated from the original body size and the body size back-calculated using the linear regression equations described above, respectively. Thus, our data suggest that the shrinkage of body size due to preservation in ethanol can cause errors in estimation of the condition factor. Our results can be used to improve the accuracy of estimating size-related biological parameters based on juvenile marbled sole that are preserved in ethanol.  相似文献   
13.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   
14.
15.
Radiolabeled benzamides have been reported to be attractive agents for targeting malignant melanoma as they bind melanin and display high accumulation in melanoma cells. Herein, we report the synthesis and bioevaluation of a novel (68)Ga-labeled benzamide as a potential PET agent for malignant melanoma. The novel radiotracer was synthesized in good radiochemical yields (80% decay corrected yield) and high specific radioactivity (10GBq/μmol). Cellular uptake of (68)Ga-SCN-NOTA-BZA was significantly higher in B16F10 cells (mouse melanoma) treated with L-tyrosine. Biodistribution and micro-PET studies of (68)Ga-SCN-NOTA-BZA in B16F10-bearing mice showed selective uptake into the tumor. The radiotracer was cleared via renal excretion without further metabolism. These results demonstrate that (68)Ga-SCN-NOTA-BZA is a potential PET probe for malignant melanoma.  相似文献   
16.
17.
RalBP1 associated EPS domain containing 1 (REPS1) is conserved from Drosophila to humans and implicated in the endocytic system. However, an exact role of REPS1 remains largely unknown. Here, we demonstrated that mitogen activated protein kinase kinase (MEK)-p90 ribosomal S6 Kinase (RSK) signaling pathway directly phosphorylated REPS1 at Ser709 upon stimulation by epidermal growth factor (EGF) and amino acid. While REPS2 is known to be involved in the endocytosis of EGF receptor (EGFR), REPS1 knockout (KO) cells did not show any defect in the endocytosis of EGFR. However, in the REPS1 KO cells and the KO cells reconstituted with a non-phosphorylatable REPS1 (REPS1 S709A), the recycling of transferrin receptor (TfR) was attenuated compared to the cells reconstituted with wild type REPS1. Collectively, we suggested that the phosphorylation of REPS1 at S709 by RSK may have a role of the trafficking of TfR.  相似文献   
18.
Development of specialized epidermal cells and structures plays a key role in plant tolerance to biotic and abiotic stresses. In the paddy field, the bright green leaf (bgl) mutants of rice (Oryza sativa) exhibit a luminous green color that is clearly distinguishable from the normal green of wild-type plants. Transmission and scanning electron microscopy revealed that small cuticular papillae (or small papillae; SP), nipple-like structures, are absent on the adaxial and abaxial leaf surfaces of bgl mutants, leading to more direct reflection and less diffusion of green light. Map-based cloning revealed that the bgl locus encodes OsRopGEF10, one of eleven OsRopGEFs in rice. RopGEFs (guanine nucleotide exchange factors for Rop) activate Rop/Rac GTPases, acting as molecular switches in eukaryotic signal transduction by replacing the bound GDP (inactive form) with GTP (active form) in response to external or internal cues. In agreement with the timing of SP initiation on the leaf epidermis, OsRopGEF10 is most strongly expressed in newly developing leaves before emergence from the leaf sheath. In yeast two-hybrid assays, OsRopGEF10 interacts with OsRac1, one of seven OsRac proteins; consistent with this, both proteins are localized in the plasma membrane. These results suggest that OsRopGEF10 activates OsRac1 to turn on the molecular signaling pathway for SP development. Together, our findings provide new insights into the molecular genetic mechanism of SP formation during early leaf morphogenesis.  相似文献   
19.
CART peptide has been shown to regulate the actions of psychomotor stimulants. Here we have further investigated the role of the biologically active CART 55-102 peptide in the nucleus accumbens (NAcc) in the expression of behavioral sensitization by amphetamine (AMPH). Rats were pre-exposed 5 times to either saline or AMPH (1 mg/kg, i.p.). After 2 weeks of withdrawal, rats were microinjected into the NAcc with saline or CART 55-102 (1.0, or 2.5 microg/0.5 microl/side) followed by AMPH challenge (1 mg/kg, i.p.). The enhanced increase of locomotion and rearing produced by repeated AMPH pre-exposures was dose-dependently inhibited by microinjection into the NAcc of CART 55-102 peptide. These results indicate that CART 55-102 peptide in the NAcc can play a compensatory inhibitory role in the expression of behavioral sensitization by AMPH and further suggest that CART peptide may be a useful target to control the drug addiction by psychomotor stimulants.  相似文献   
20.
The non-essential MGS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes an enzyme containing both DNA-dependent ATPase and DNA annealing activities. MGS1 appears to function in post-replicational repair processes that contribute to genome stability. In this study, we identified MGS1 as a multicopy suppressor of the temperature-sensitive dna2Δ405N mutation, a DNA2 allele lacking the N-terminal 405 amino acid residues. Mgs1 stimulates the structure-specific nuclease activity of Rad27 (yeast Fen1 or yFen1) in an ATP-dependent manner. ATP binding but not hydrolysis was sufficient for the stimulatory effect of Mgs1, since non-hydrolyzable ATP analogs are as effective as ATP. Suppression of the temperature-sensitive growth defect of dna2Δ405N required the presence of a functional copy of RAD27, indicating that Mgs1 suppressed the dna2Δ405N mutation by increasing the activity of yFen1 (Rad27) in vivo. Our results provide in vivo and in vitro evidence that Mgs1 is involved in Okazaki fragment processing by modulating Fen1 activity. The data presented raise the possibility that the absence of MGS1 may impair the processing of Okazaki fragments, leading to genomic instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号