全文获取类型
收费全文 | 5880篇 |
免费 | 425篇 |
国内免费 | 5篇 |
专业分类
6310篇 |
出版年
2024年 | 8篇 |
2023年 | 27篇 |
2022年 | 97篇 |
2021年 | 128篇 |
2020年 | 100篇 |
2019年 | 117篇 |
2018年 | 204篇 |
2017年 | 160篇 |
2016年 | 253篇 |
2015年 | 395篇 |
2014年 | 396篇 |
2013年 | 438篇 |
2012年 | 569篇 |
2011年 | 508篇 |
2010年 | 302篇 |
2009年 | 275篇 |
2008年 | 370篇 |
2007年 | 376篇 |
2006年 | 298篇 |
2005年 | 263篇 |
2004年 | 249篇 |
2003年 | 230篇 |
2002年 | 163篇 |
2001年 | 94篇 |
2000年 | 81篇 |
1999年 | 68篇 |
1998年 | 29篇 |
1997年 | 25篇 |
1996年 | 14篇 |
1995年 | 14篇 |
1994年 | 6篇 |
1993年 | 5篇 |
1992年 | 8篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 3篇 |
1979年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1971年 | 2篇 |
排序方式: 共有6310条查询结果,搜索用时 31 毫秒
981.
Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays 总被引:1,自引:0,他引:1
Julian M. Lenis Jason D. Gillman Jeong Dong Lee J. Grover Shannon Kristin D. Bilyeu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2010,120(6):1139-1149
Soybean seeds contain three lipoxygenase (Lox) enzymes that are controlled by separate genes, Lox1, Lox2 and Lox3. Lipoxygenases play a role in the development of unpleasant flavors in foods containing soybean by oxidation of polyunsaturated fatty acids. Null alleles for all three enzymes have been identified, lox1, lox2 and lox3, and are known to be inherited as simple recessive alleles. Previous studies determined that a missense mutation rendered Lox2 inactive; however, the genetic cause of either lox1 or lox3 mutation was not known. The objectives of this study were the molecular characterization of both lox1 and lox3 mutant alleles and the development of molecular markers to accelerate breeding for Lox-free soybean varieties. We identified two independent mutant alleles as the genetic causes of the lack of Lox1 in seeds of two lox1 mutant soybean lines. Similarly, a mutant allele that truncates Lox3 in a lox3 mutant soybean line was identified. Molecular markers were designed and confirmed to distinguish mutant, wild type, and heterozygous individuals for Lox1, Lox2 and Lox3 genes. Genotype and Lox phenotype analysis showed a perfect association between the inheritance of homozygous lox mutant alleles and the lack of Lox activity. Molecular characterization of a seed-lipoxygenase-free soybean line led to the discovery that an induced recombination event within the Lox1 gene was responsible for breaking the tight linkage in repulsion phase between mutant alleles at the Lox1 and Lox2 loci. The molecular resources developed in this work should accelerate the inclusion of the lipoxygenase-free trait in soybean varieties. 相似文献
982.
Man Sub Kim Yesol Bak Yun Sun Park Dong Hun Lee Jung Hee Kim Jeong Woo Kang Hyuk-Hwan Song Sei-Ryang Oh Do Young Yoon 《Cell biology and toxicology》2013,29(4):259-272
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells. 相似文献
983.
984.
Amomum xanthoides extract prevents cytokine-induced cell death of RINm5F cells through the inhibition of nitric oxide formation 总被引:2,自引:0,他引:2
Kwon KB Kim JH Lee YR Lee HY Jeong YJ Rho HW Ryu DG Park JW Park BH 《Life sciences》2003,73(2):181-191
We previously showed that Amomum xanthoides extract prevented alloxan-induced diabetes through the suppression of NF-kappaB activation. In this study, the preventive effects of A. xanthoides extract on cytokine-induced beta-cell destruction were examined. Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. A. xanthoides extract completely protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity in rat insulinoma cell line (RINm5F). Incubation with A. xanthoides extract resulted in a significant reduction in IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which A. xanthoides extract inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. Our results revealed the possible therapeutic value of A. xanthoides extract for the prevention of diabetes mellitus progression. 相似文献
985.
Gamma irradiation‐induced disease resistance of pear (Pyrus pyrifolia “Niitaka”) against Penicillium expansum 下载免费PDF全文
In this study, the effects of gamma irradiation on the resistance of pear fruit against Penicillium expansum, the causal agent of blue mould disease, were investigated. A low dose of gamma irradiation for 14 days increased the disease resistance and firmness of pear fruits. Remarkably, exposure to 200 Gy of gamma irradiation significantly maintained fruit firmness, markedly reduced disease incidence and enhanced the activity of defence‐related enzymes (e.g., β‐1,3‐glucanase, phenylalanine ammonia lyase, peroxidase and polyphenol oxidase) and expression of pathogenesis‐related (PR) genes (e.g., PR‐1, PR‐3 and PR‐4). Therefore, the gamma irradiation‐induced resistance against P. expansum involves both metabolic changes and the induction of expression of defence‐related genes. In addition, scanning electron microscopic analysis revealed that gamma irradiation significantly inhibits the growth of P. expansum. These results suggest that exposure of mature harvested pear fruits to artificial gamma irradiation confers fungal disease resistance; therefore, gamma irradiation represents an important strategy for controlling postharvest diseases in pear fruit. 相似文献
986.
987.
Kwang‐Pyo Kim Jeong‐Dan Cha Eun‐Hye Jang Jochen Klumpp Steven Hagens Wolf‐Dietrich Hardt Kyung‐Yeol Lee Martin J. Loessner 《Microbial biotechnology》2008,1(3):247-257
The increasing occurrence of antibiotic‐resistant pathogens is of growing concern, and must be counteracted by alternative antimicrobial treatments. Bacteriophages represent the natural enemies of bacteria. However, the strong immune response following application of phages and rapid clearance from the blood stream are hurdles which need to be overcome. Towards our goal to render phages less immunogenic and prolong blood circulation time, we have chemically modified intact bacteriophages by conjugation of the non‐immunogenic polymer monomethoxy‐polyethylene glycol (mPEG) to virus proteins. As a proof of concept, we have used two different polyvalent and strictly virulent phages of the Myoviridae, representing typical candidates for therapeutical approaches: Felix‐O1 (infects Salmonella) and A511 (infects Listeria). Loss of phage infectivity after PEGylation was found to be proportional to the degree of modification, and could be conveniently controlled by adjusting the PEG concentration. When injected into naïve mice, PEGylated phages showed a strong increase in circulation half‐life, whereas challenge of immunized mice did not reveal a significant difference. Our results suggest that the prolonged half‐life is due to decreased susceptibility to innate immunity as well as avoidance of cellular defence mechanisms. PEGylated viruses elicited significantly reduced levels of T‐helper type 1‐associated cytokine release (IFN‐γ and IL‐6), in both naïve and immunized mice. This is the first study demonstrating that PEGylation can increases survival of infective phage by delaying immune responses, and indicates that this approach can increase efficacy of bacteriophage therapy. 相似文献
988.
Bae WC Lee HK Choe YC Jahng DJ Lee SH Kim SJ Lee JH Jeong BC 《Journal of microbiology (Seoul, Korea)》2005,43(1):21-27
A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and 37 degrees C. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61%; higher activity than NADH. The Km values for NADPH and NADH were determined to be 47.5 and 17.2 micromol, and the Vmax values 322.2 and 130.7 micromol Cr(VI) min(-1)mg(-1) protein, respectively. The activity was strongly inhibited by N-ethylmalemide, Ag2+, Cd2+, Hg2+, and Zn2+. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains. 相似文献
989.
Background
The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions.Results
We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses.Conclusions
We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.990.
Walid Abushahba Oyenike O. Olabisi Byeong-Seon Jeong Rajeev K. Boregowda Yu Wen Fang Liu James S. Goydos Ahmed Lasfar Karine A. Cohen-Solal 《PloS one》2012,7(10)
Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. 相似文献