首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10874篇
  免费   781篇
  国内免费   11篇
  2024年   12篇
  2023年   36篇
  2022年   72篇
  2021年   226篇
  2020年   158篇
  2019年   226篇
  2018年   336篇
  2017年   280篇
  2016年   466篇
  2015年   668篇
  2014年   712篇
  2013年   809篇
  2012年   1022篇
  2011年   981篇
  2010年   574篇
  2009年   524篇
  2008年   701篇
  2007年   670篇
  2006年   525篇
  2005年   487篇
  2004年   468篇
  2003年   449篇
  2002年   324篇
  2001年   216篇
  2000年   189篇
  1999年   151篇
  1998年   66篇
  1997年   46篇
  1996年   46篇
  1995年   36篇
  1994年   22篇
  1993年   17篇
  1992年   36篇
  1991年   32篇
  1990年   14篇
  1989年   18篇
  1988年   13篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1971年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有10000条查询结果,搜索用时 901 毫秒
71.
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights.  相似文献   
72.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
73.
74.
Bioprocess and Biosystems Engineering - The β-glucanase produced from Bacillus sp. CSB55 not only depicts the potent industrial characteristics but also relates as bio-industrial catalyst...  相似文献   
75.
The population abundance, infestation, and harmful effects of the aphid Aphis craccivora Koch (Hemiptera: Aphididae) were studied on four bean plant species, namely the country bean (Lablab purpureus var. BARI Seem 1), the yard‐long bean (Vigna sesquipedalis var. BARI Borboti 1), the hyacinth bean (Dolichos lablab var. BARI Seem 6), and the bush bean (Phaseolus vulgaris var. BARI Jar Seem 3). Aphid abundance and infestation on the leaves, inflorescences, flowers, and pods differed significantly among the bean plant species, with P. vulgaris and V. sesquipedalis having the lowest and highest results, respectively. Aphid severity grade and the number of trichomes of the bean plant species were negatively correlated. The duration of the growth stages among the bean plant species were significantly different, with V. sesquipedalis having the shortest durations. Aphid abundance and infestation significantly affected the physical and phytochemical characteristics of the bean plant species. The highest reduction of number of leaves, flower inflorescences, and pod inflorescences per plant, and moisture and chlorophyll content in the leaves was found in L. purpureus. The results for V. sesquipedalis revealed the highest reduction in plant height, seed weight, and pH, while those of D. lablab showed the highest reduction in leaf area.  相似文献   
76.
Gonggeom‐ji pond is the first protected paddy field wetland area, designated by the Ministry of Environment of Korea in 2011, because of its high biodiversity and historic value. It contains reservoirs, paddy fields, and a forest site that provides diverse niches for insects. Quantitative methods were used in this study to estimate the insect diversity of this region. A transect of 50 m was designated in each site (reservoirs, paddy fields, and a forest site). Data were collected using sweeping and pitfall traps along each transect in May, August, and November 2017, representative of the seasons—spring, summer, and autumn, respectively. As a result, a total of 1079 individual insects representing 170 species from 60 families within nine orders were collected. Diversity, richness, and evenness indices were the highest in the forest site in May (4.77, 8.6, and 0.91, respectively). The dominance index was the highest in the forest site in November (0.64). Similarity index was the highest in the reservoir in May and August (0.519). These results would help compare different sites and their vegetation to assess relationships between insects and habitats.  相似文献   
77.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   
78.
79.
The acquisition of sulfur from environment and its assimilation is essential for fungal growth and activities. Here, we describe novel features of the regulatory network of sulfur metabolism in Ogataea parapolymorpha, a thermotolerant methylotrophic yeast with high resistance to harsh environmental conditions. A short bZIP protein (OpMet4p) of O. parapolymorpha, displaying the combined structural characteristics of yeast and filamentous fungal Met4 homologues, plays a key role as a master regulator of cell homeostasis during sulfur limitation, but also its function is required for the tolerance of various stresses. Domain swapping analysis, combined with deletion analysis of the regulatory domains and genes encoding OpCbf1p, OpMet28p, and OpMet32p, indicated that OpMet4p does not require the interaction with these DNA-binding cofactors to induce the expression of sulfur genes, unlike the Saccharomyces cerevisiae Met4p. ChIP analysis confirmed the notion that OpMet4p, which contains a canonical bZIP domain, can bind the target DNA in the absence of cofactors, similar to homologues in other filamentous fungi. Collectively, the identified unique features of the O. parapolymorpha regulatory network, as the first report on the sulfur regulation by a short yeast Met4 homologue, provide insights into conservation and divergence of the sulfur regulatory networks among diverse ascomycetous fungi.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号