首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10881篇
  免费   781篇
  国内免费   11篇
  2024年   12篇
  2023年   36篇
  2022年   79篇
  2021年   226篇
  2020年   158篇
  2019年   226篇
  2018年   336篇
  2017年   280篇
  2016年   466篇
  2015年   668篇
  2014年   712篇
  2013年   809篇
  2012年   1022篇
  2011年   981篇
  2010年   574篇
  2009年   524篇
  2008年   701篇
  2007年   670篇
  2006年   525篇
  2005年   487篇
  2004年   468篇
  2003年   449篇
  2002年   324篇
  2001年   216篇
  2000年   189篇
  1999年   151篇
  1998年   66篇
  1997年   46篇
  1996年   46篇
  1995年   36篇
  1994年   22篇
  1993年   17篇
  1992年   36篇
  1991年   32篇
  1990年   14篇
  1989年   18篇
  1988年   13篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1971年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
Leucocytosis was shown to occur in the pulmonate gastropod Biomphalaria glabrata exposed to the trematode Echinostoma lindoense. In these sensitized snails, the leukocyte count in the hemolymph was elevated 3 to 5 days postexposure to miracidia, and prior to complete encapsulation of sporocysts. This increase continued 1 to 5 days after destruction of sensitizing, irradiated E. lindoense sporocysts. Counts returned to normal levels after this period. A significant and more rapid increase in numbers of circulating leukocytes occurred 1 to 6 hr after reexposure of snails to a sensitizing dose of nonirradiated E. lindoense sporocysts. The leukocyte counts usually returned to normal levels after this period, except in snails in which some resensitizing sporocysts remained alive.  相似文献   
62.
63.
64.
Allyl isothiocyanate (AITC) is a phytochemical found in cruciferous vegetables that has known chemopreventive and chemotherapeutic activities. Thus far, the antiangiogenic activity of AITC has not been reported in in vivo studies. Herein, we investigated the effect of AITC on angiogenesis and inflammation in a mouse model of colitis. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium via drinking water. To monitor the activity of AITC in this model, we measured body weight, disease activity indices, histopathological scores, microvascular density, myeloperoxidase activity, F4/80 staining, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR2) expression in the mice. We found that AITC-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than vehicle-treated mice. AITC treatment also significantly lessened the disruption of colonic architecture that is normally associated with colitis and repressed the microvascularization response. Further, AITC treatment reduced both leukocyte recruitment and macrophage infiltration into the inflamed colon, and the mechanism these activities involved repressing iNOS and COX-2 expression. Finally, AITC attenuated the expression of VEGF-A and VEGFR2. Thus, AITC may have potential application in treating conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.  相似文献   
65.
In this paper, three Korean species of the big‐head fly, genus Jassidophaga Aczél were treated: J. chiiensis (Ouchi), J. pala (Morakote) and J. villosa (Roser). Of these, J. pala is reported in Korea for the first time. A key to Korean species and photographs on external features are given.  相似文献   
66.
To study the genetic diversity and population structure of Lilium tsingtauense Gilg (Qingdao Lily), we collected 648 samples from 12 sites in China and Korea, and analyzed their Inter-Simple Sequence Repeat (ISSR) molecular markers and morphological characters. ISSR data revealed a relatively high genetic diversity at the species level, with 72.31% polymorphic loci, effective numbers of alleles of 1.437, average expected heterozygosity of 0.231 and Shannon’s information index of 0.369. Considerable genetic differentiation among the natural populations (GST = 0.144) and the gene flow (Nm = 1.487) were detected. AMOVA analysis and UPGMA-dendrogram suggested a hierarchical regional structure among populations, and spatial autocorrelation analysis showed a micro-scaled spatial structure. Furthermore, there was a high correlation between morphological characters and genetic parameters obtained from ISSR parameters. There was only a low genetic differentiation among the different morphological types of L. tsingtauence in China. Based on these findings, we recommend in situ and ex situ conservation strategies for the preservation of L. tsingtauense.  相似文献   
67.
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
Highlights
  • •Liver Mallory-Denk-Body inducers elicited an IκBα-loss and NF-κB-activation.
  • •IκBα-loss was due to its sequestration into insoluble cytoplasmic aggregates.
  • •Four proteomic approaches identified 10 IκBα-interacting/aggregating proteins.
  • •Nup153/RanBP2-aggregation prevented IκBα nuclear entry for ending NF-κB-activation.
  相似文献   
68.
69.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
70.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号