首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5892篇
  免费   431篇
  国内免费   6篇
  2024年   7篇
  2023年   23篇
  2022年   68篇
  2021年   128篇
  2020年   101篇
  2019年   118篇
  2018年   204篇
  2017年   160篇
  2016年   253篇
  2015年   395篇
  2014年   402篇
  2013年   440篇
  2012年   571篇
  2011年   510篇
  2010年   305篇
  2009年   276篇
  2008年   371篇
  2007年   376篇
  2006年   301篇
  2005年   262篇
  2004年   250篇
  2003年   231篇
  2002年   166篇
  2001年   94篇
  2000年   84篇
  1999年   70篇
  1998年   36篇
  1997年   25篇
  1996年   14篇
  1995年   15篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1971年   2篇
排序方式: 共有6329条查询结果,搜索用时 15 毫秒
91.
Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (Ab) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G1 to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27KIP1. Saponins also increased stability of p27KIP1 in Th cells after antigenic stimulation.  相似文献   
92.
93.
94.
Bovine lactoferricin (LfcinB) is a multi‐functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin‐1β) IL‐1β and FGF‐2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL‐1β and FGF‐2 on the expression of cartilage‐degrading enzymes (MMP‐1, MMP‐3, and MMP‐13), destructive cytokines (IL‐1β and IL‐6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL‐4 and IL‐10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti‐inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL‐1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti‐catabolic and anti‐inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. J. Cell. Physiol. 228: 447–456, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
95.
96.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   
97.
98.
To characterize the denitrifying phosphorus (P) uptake properties of “Candidatus Accumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and “Candidatus Competibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and “Ca. Competibacter.”  相似文献   
99.
100.
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号