全文获取类型
收费全文 | 50306篇 |
免费 | 3596篇 |
国内免费 | 24篇 |
专业分类
53926篇 |
出版年
2024年 | 56篇 |
2023年 | 192篇 |
2022年 | 597篇 |
2021年 | 960篇 |
2020年 | 601篇 |
2019年 | 736篇 |
2018年 | 1110篇 |
2017年 | 985篇 |
2016年 | 1599篇 |
2015年 | 2499篇 |
2014年 | 2847篇 |
2013年 | 3177篇 |
2012年 | 4223篇 |
2011年 | 4023篇 |
2010年 | 2538篇 |
2009年 | 2325篇 |
2008年 | 3213篇 |
2007年 | 3089篇 |
2006年 | 2696篇 |
2005年 | 2492篇 |
2004年 | 2327篇 |
2003年 | 1985篇 |
2002年 | 1718篇 |
2001年 | 1346篇 |
2000年 | 1274篇 |
1999年 | 1026篇 |
1998年 | 412篇 |
1997年 | 353篇 |
1996年 | 255篇 |
1995年 | 217篇 |
1994年 | 213篇 |
1993年 | 179篇 |
1992年 | 336篇 |
1991年 | 305篇 |
1990年 | 271篇 |
1989年 | 233篇 |
1988年 | 176篇 |
1987年 | 167篇 |
1986年 | 132篇 |
1985年 | 110篇 |
1984年 | 81篇 |
1983年 | 86篇 |
1982年 | 65篇 |
1981年 | 54篇 |
1980年 | 57篇 |
1979年 | 70篇 |
1978年 | 51篇 |
1977年 | 50篇 |
1976年 | 45篇 |
1974年 | 63篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
The genus Pyrrhopappus in recent systematic treatments has comprised five taxa (four species, one with two varieties), which have now been studied anew using morphogeographical and chloroplast DNA restriction site data. Eight populations, representing all of the recognized taxa of Pyrrhopappus, were digested with 17 restriction enzymes. Only three restriction site differences were found from among 750 restriction sites and no length variations were observed. This contrasts with similar studies, using these same enzymes, on the closely related genus Krigia in which 173 mutation sites and 20 length variations were found among the seven species concerned. Nucleotide sequence divergence values among the species of Pyrrhopappus were extremely low (0.0012) compared to much higher values found in the closely related genus Krigia (0.1270). Three species of Pyrrhopappus are herein recognized: two diploids with 2n = 12 chromosomes, P. carolinianus and P. pauciflorus (including P. multicaulis, P. geiseri and P. rothrockii), and a tetraploid (2n = 24), P. grandiflorus. The tetraploid is partially sympatric with both diploids but is readily recognized by its perennial roots, which bear tuber-like enlargements. These three species presumably arose relatively recently, and the DNA data suggest that neither P. pauciflorus nor P. carolinianus gave rise to the tetraploid P. grandiflorus. 相似文献
82.
Mice with the CBA/N defect (xid) are unresponsive to phosphorylcholine (PC), To determine whether idiotype-specific suppressor T cells can also be generated in these defective mice, defective (CBA/N X BALB/c)F1 male and nondefective (CBA/N X BALB/c)F1 female or (BALB/c X CBA/N)F1 male mice were neonatally injected with antibodies specific for the major idiotype of anti-PC antibody, i.e., anti-TEPC-15 idiotype (T15id) antibody. Suppressor cell activity was examined by co-culturing spleen cells from neonatally treated F1 mice with spleen cells of normal nondefective F1 mice in the presence of antigen. Spleen cells from defective (CBA/NM X BALB/c)F1 mice treated with anti-T15id antibody demonstrated a level of suppressor activity (greater than 83% suppression) comparable to that of similarly treated nondefective F1 mice. This suppression was specific for the T15id of anti-PC response, and a Lyt-1-2+-bearing T cell population appeared to be responsible for the active suppression. These suppressor T cells recognized T15 but not PC, based on a functional absorption test. These results indicate that the CBA/N defects, including the deficiency in the anti-PC response by B lymphocytes and a possible T cell defect, do not influence the generation of T15id-specific suppressor T cells by neonatal injection with anti-T15id antibody. 相似文献
83.
84.
Leucocytosis was shown to occur in the pulmonate gastropod Biomphalaria glabrata exposed to the trematode Echinostoma lindoense. In these sensitized snails, the leukocyte count in the hemolymph was elevated 3 to 5 days postexposure to miracidia, and prior to complete encapsulation of sporocysts. This increase continued 1 to 5 days after destruction of sensitizing, irradiated E. lindoense sporocysts. Counts returned to normal levels after this period. A significant and more rapid increase in numbers of circulating leukocytes occurred 1 to 6 hr after reexposure of snails to a sensitizing dose of nonirradiated E. lindoense sporocysts. The leukocyte counts usually returned to normal levels after this period, except in snails in which some resensitizing sporocysts remained alive. 相似文献
85.
86.
87.
QuangMinh Nguyen Arya Bagus Boedi Iswanto Geon Hui Son Uyen Thi Vuong Jihyun Lee JinHo Kang Walter Gassmann Sang Hee Kim 《Molecular Plant Pathology》2022,23(9):1390
During pathogenesis, effector proteins are secreted from the pathogen to the host plant to provide virulence activity for invasion of the host. However, once the host plant recognizes one of the delivered effectors, effector‐triggered immunity activates a robust immune and hypersensitive response (HR). In planta, the effector AvrRps4 is processed into the N‐terminus (AvrRps4N) and the C‐terminus (AvrRps4C). AvrRps4C is sufficient to trigger HR in turnip and activate AtRRS1/AtRPS4‐mediated immunity in Arabidopsis; on the other hand, AvrRps4N induces HR in lettuce. Furthermore, AvrRps4N‐mediated HR requires a conserved arginine at position 112 (R112), which is also important for full‐length AvrRps4 (AvrRps4F) processing. Here, we show that effector processing and effector recognition in lettuce are uncoupled for the AvrRps4 family. In addition, we compared effector recognition by lettuce of AvrRps4 and its homologues, HopK1 and XopO. Interestingly, unlike for AvrRps4 and HopK1, mutation of the conserved R111 in XopO by itself was insufficient to abolish recognition. The combination of amino acid substitutions arginine 111 to leucine with glutamate 114 to lysine abolished the XopO‐mediated HR, suggesting that AvrRps4 family members have distinct structural requirements for perception by lettuce. Together, our results provide an insight into the processing and recognition of AvrRps4 and its homologues. 相似文献
88.
89.
Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site 总被引:19,自引:16,他引:19 下载免费PDF全文
Budding cells of the yeast Saccharomyces cerevisiae possess a ring of 10-nm-diameter filaments, of unknown biochemical nature, that lies just inside the plasma membrane in the neck connecting the mother cell to its bud. Electron microscopic observations suggest that these filaments assemble at the budding site coincident with bud emergence and disassemble shortly before cytokinesis (Byers, B. and L. Goetsch. 1976. J. Cell Biol. 69:717-721). Mutants defective in any of four genes (CDC3, CDC10, CDC11, or CDC12) lack these filaments and display a pleiotropic phenotype that involves abnormal bud growth and an inability to complete cytokinesis. We showed previously by immunofluorescence that the CDC12 gene product is probably a constituent of the ring of 10-nm filaments (Haarer, B. and J. Pringle. 1987. Mol. Cell. Biol. 7:3678-3687). We now report the use of fusion proteins to generate polyclonal antibodies specific for the CDC3 gene product. In immunofluorescence experiments, these antibodies decorated the neck regions of wild-type and mutant cells in patterns suggesting that the CDC3 gene product is also a constituent of the ring of 10-nm filaments. We also used the CDC3-specific and CDC12-specific antibodies to investigate the timing of localization of these proteins to the budding site. The results suggest that the CDC3 protein is organized into a ring at the budding site well before bud emergence and remains so organized for some time after cytokinesis. The CDC12 product appears to behave similarly, but may arrive at the budding site closer to the time of bud emergence, and disappear from that site more quickly after cytokinesis, than does the CDC3 product. Examination of mating cells and cells responding to purified mating pheromone revealed novel arrangements of the CDC3 and CDC12 products in the regions of cell wall reorganization. Both proteins were present in normal-looking ring structures at the bases of the first zygotic buds. 相似文献
90.
Yeongseon Park Yuseob Kim 《Evolution; international journal of organic evolution》2019,73(8):1564-1577
Temporally varying selection is known to maintain genetic polymorphism under certain restricted conditions. However, if part of a population can escape from selective pressure, a condition called the “storage effect” is produced, which greatly promotes balanced polymorphism. We investigate whether seasonally fluctuating selection can maintain polymorphism at multiple loci, if cyclically fluctuating selection is not acting on a subpopulation called a “refuge.” A phenotype with a seasonally oscillating optimum is determined by alleles at multiple sites, across which the effects of mutations on phenotype are distributed randomly. This model resulted in long‐term polymorphism at multiple sites, during which allele frequencies oscillate heavily, greatly increasing the level of nonneutral polymorphism. The level of polymorphism at linked neutral sites was either higher or lower than expected for unlinked neutral loci. Overall, these results suggest that for a protein‐coding sequence, the nonsynonymous‐to‐synonymous ratio of polymorphism may exceed one. In addition, under randomly perturbed environmental oscillation, different sets of sites may take turns harboring long‐term polymorphism, thus making trans‐species polymorphism (which has been predicted as a classical signature of balancing selection) less likely. 相似文献