首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113225篇
  免费   1905篇
  国内免费   905篇
  116035篇
  2023年   83篇
  2022年   286篇
  2021年   411篇
  2020年   274篇
  2019年   333篇
  2018年   12213篇
  2017年   10986篇
  2016年   8027篇
  2015年   1728篇
  2014年   1465篇
  2013年   1686篇
  2012年   5960篇
  2011年   14264篇
  2010年   12879篇
  2009年   9059篇
  2008年   10977篇
  2007年   12494篇
  2006年   1335篇
  2005年   1486篇
  2004年   1881篇
  2003年   1831篇
  2002年   1463篇
  2001年   759篇
  2000年   626篇
  1999年   377篇
  1998年   165篇
  1997年   161篇
  1996年   107篇
  1995年   120篇
  1994年   77篇
  1993年   107篇
  1992年   153篇
  1991年   166篇
  1990年   128篇
  1989年   139篇
  1988年   134篇
  1987年   117篇
  1986年   90篇
  1985年   106篇
  1984年   81篇
  1983年   80篇
  1982年   44篇
  1979年   59篇
  1978年   56篇
  1976年   49篇
  1975年   43篇
  1974年   44篇
  1973年   40篇
  1972年   281篇
  1971年   296篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Summary Plant hairy root cultures of Lithospermum erythrorhizon were carried out to produce shikonin derivatives by employing in situ extraction with n-hexadecane in a shake flask and a bubble column bioreactor. Over 95 % shikonin produced was recovered in the n-hexadecane layer. In flask cultures the maximum concentration of shikonin with n-hexadecane extraction was 3 times higher than that obtained without extraction. In the two phase bubble column reactor, 572.6 mg/L of shikonin and 15.6 g/L of dry cell mass were obtained after 54 days. Shikonin was produced at a constant level of 10.6 mg/L day during this period.  相似文献   
103.
We have used an antibody against the functional homolog of the cdc2 kinase of maize to localize the p34cdc2 protein within dividing cells of the root apex and the stomatal complex of leaf epidermis. The microtubule cytoskeletal structure of plant cells was visualized concomitantly with a monoclonal antibody specific for [alpha]-tubulin. We found that the cdc2 protein is localized mainly to the nucleus in plant cells at interphase and early prophase. This finding contrasts markedly with the predominantly cytoplasmic staining obtained using antibody to the PSTAIRE motif, which is common to cdc2 and numerous cdc2-like proteins. In a subpopulation of root cells at early prophase, the p34cdc2 protein is also distributed in a band bisecting the nucleus. Double labeling with the maize p34cdc2Zm antibody and tubulin antibody revealed that this band colocalizes with the preprophase band (PPB) of microtubules, which predicts the future division site. Root cells in which microtubules had been disrupted with oryzalin did not contain this band of p34cdc2 protein, suggesting that formation of the microtubule PPB is necessary for localization of the p34cdc2 kinase to the plane of the PPB. The p34cdc2 protein is also localized to the nucleus and PPB in cells that give rise to the stomatal complex, including those cells preparing for the highly asymmetrical divisions that produce subsidiary cells. Association of the p34cdc2 protein with the PPB suggests that the cdc2 kinase has a role in establishing the division site of plant cells and, therefore, a role in plant morphogenesis.  相似文献   
104.
The coral skeleton harbours a diverse community of bacteria and microeukaryotes exposed to light, O2 and pH gradients, but how such physicochemical gradients affect the coral skeleton microbiome remains unclear. In this study, we employed chemical imaging of O2 and pH, hyperspectral reflectance imaging and spatially resolved taxonomic and inferred functional microbiome characterization to explore links between the skeleton microenvironment and microbiome in the reef-building corals Porites lutea and Paragoniastrea benhami. The physicochemical environment was more stable in the deep skeleton, and the diversity and evenness of the bacterial community increased with skeletal depth, suggesting that the microbiome was stratified along the physicochemical gradients. The bulk of the coral skeleton was in a low O2 habitat, whereas pH varied from pH 6–9 with depth. Physicochemical gradients of O2 and pH of the coral skeleton explained the β-diversity of the bacterial communities, and skeletal layers that showed O2 peaks had a higher relative abundance of endolithic algae, reflecting a link between the abiotic environment and the microbiome composition. Our study links the physicochemical, microbial and functional landscapes of the coral skeleton and provides new insights into the involvement of skeletal microbes in the coral holobiont metabolism.  相似文献   
105.
106.
Abstract: The α subunit of Gzz) harbors two N-terminal serine residues (at positions 16 and 27) that serve as protein kinase C-mediated phosphorylation sites. The cognate residues in the α subunit of Gt1 provide binding surfaces for the β1 subunit. We used three serine-to-alanine mutants of αz to investigate the functional importance of the two N-terminal serine residues. Wild-type or mutant αz was transiently coexpressed with different receptors and adenylyl cyclase isozymes in human embryonic kidney 293 cells, and agonist-dependent regulation of cyclic AMP accumulation was examined in a setting where all endogenous α subunits of Gi were inactivated by pertussis toxin. Replacement of one or both serine residues by alanine did not alter the ability of αz to interact with δ-opioid, dopamine D2, or adenosine A1 receptors. Its capacity to inhibit endogenous and type VI adenylyl cyclases was also unaffected. Functional release of βγ subunits from the mutant αz subunits was not impaired because they transduced βγ-mediated stimulation of type II adenylyl cyclase. Constitutively active mutants of all four αz subunits were constructed by the introduction of a Q205L mutation. The activated mutants showed differential abilities to inhibit human choriogonadotropin-mediated cyclic AMP accumulation in luteinizing hormone receptor-transfected cells. Loss of both serine residues, but not either one alone, impaired the receptor-independent inhibition of adenylyl cyclase by the GTPase-deficient mutant. Thus, replacement of the amino-terminal serine residues of αz has no apparent effect on receptor-mediated responses, but these serine residues may be essential for ensuring transition of αz into the active conformation.  相似文献   
107.
108.
109.
Auxotrophic strains of Micromonospora rosaria were isolated by N-methyl-N'-nitro-N'-nitrosoguanidine mutagenesis and used in intraspecific recombination by protoplast fusion. High-frequency fusion of protoplasts of M. rosaria strains was induced by polyethylene glycol (molecular weight, 1,000) (PEG 1,000). The optimum concentration of PEG 1,000 for fusion of M. rosaria was 50% (wt/vol). PEG 4,000 was slightly better than PEG 1,000 at concentrations lower than 50% (wt/vol). The recombinant frequency did not increase after treatment with PEG 1,000 (50% [wt/vol]) for longer than 20 min. Under these conditions, fusion with many auxotrophic strains of M. rosaria resulted in a high frequency of formation of true recombinants (sometimes more than 10%). Additionally, when ros (rosamicin nonproducing) strains were crossed by protoplast fusion; about 5% of the resultant prototrophic recombinants were shown to have the ros+ (rosamicin producing) characteristic restored. Rosamicin production by M. rosaria colonies was clearly distinguished by the broth overlay method. The results of fusion experiments between ros and ros+ strains indicated that either the chromosomal mutation or pleiotrophic effect of some auxotrophic markers is involved.  相似文献   
110.
Antigenic proteins of 36 and 29 kDa were localized in Spirometra mansoni plerocercoid (sparganum) immunohistochemically by avidin biotin complex (ABC) staining. When polyclonal antibodies such as BALB/c mouse serum immunized with crude saline extract of sparganum or confirmed sparganosis sera were reacted as primary antibodies, the positive chromogen (3-amino, 9-ethylcarbazole) reactions were recognized at syncytial tegument, tegumental cells, muscle and parenchymal cells and lining cells of excretory canals. A monoclonal antibody (MAb) which was reacting to 36 and 29 kDa proteins in the extract of the worm was localized at the syncytial tegument and tegumental cells. The present results suggested that the potent antigenic proteins of 36 and 29 kDa in sparganum were produced at the tegumental cells and transported to the syncytial tegument.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号