首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2429篇
  免费   127篇
  国内免费   168篇
  2724篇
  2024年   10篇
  2023年   21篇
  2022年   55篇
  2021年   68篇
  2020年   44篇
  2019年   68篇
  2018年   78篇
  2017年   53篇
  2016年   104篇
  2015年   138篇
  2014年   145篇
  2013年   177篇
  2012年   249篇
  2011年   249篇
  2010年   159篇
  2009年   129篇
  2008年   192篇
  2007年   160篇
  2006年   116篇
  2005年   111篇
  2004年   89篇
  2003年   82篇
  2002年   56篇
  2001年   37篇
  2000年   32篇
  1999年   29篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有2724条查询结果,搜索用时 15 毫秒
841.
3-O-Acetyloleanolic acid, a pentacyclic triterpenoid isolated from cowpea seeds, inhibited proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. HUVECs. The induced apoptosis was characterized by detection of cell surface annexin V and sub-G1 populations. The number of cells immunostained with annexin V-fluorescein isothiocyanate increased after treatment with 3-O-acetyloleanolic acid. The sub-G1 cell populations were also increased in treated HUVECs. 3-O-Acetyloleanolic acid induced activation of caspase 3, a critical mediator of apoptosis signaling. It also significantly inhibited angiogenesis in an in vivo Matrigel plug assay. 3-O-Acetyloleanolic acid thus exhibits anti-angiogenic effects and induces apoptosis in HUVECs and the results suggest that it has a potential use for suppression of the tumor growth stimulated by angiogenesis.  相似文献   
842.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   
843.
The kinetics of reductive dissolution of hematite ( f -Fe 2 O 3 ) by the dissimilatory iron-reducing bacterium Shewanella putrefaciens strain CN32 under nongrowth conditions with H 2 as the electron donor was measured and then modeled using a reaction-based biogeochemical model. Minimum data needs and a reaction matrix decomposition procedure are presented from a reaction-based modeling perspective and used to design subsequent experiments. Detailed step-by-step modeling methodology is presented. Independent experiments were performed to determine if Fe 2+ sorption to S. putrefaciens CN32 or hematite could be described as either kinetic or equilibrium reactions (i.e., slow or fast, respectively, relative to the time-scale of the bioreduction experiments). Fe 2+ sorption to S. putrefaciens CN32 was an equilibrium reaction and a linear adsorption isotherm was used to determine the associated equilibrium constant. Fe 2+ sorption to hematite was a kinetic reaction and an elementary rate formulation was independently determined from abiotic experiments. The ratio of the forward rate divided by the backward rate [log(k f /k b )] for the sorption of Fe 2+ to hematite was 6.33 - 0.14 (n = 2) and the corresponding log(k f ) was 6.66 - 0.28 (n = 2, M -1 h -1 ). Three different kinetic reaction rate formulations were used to model hematite bioreduction, an elementary rate law for the overall reaction, an empirical rate law physically based on hematite "free" surface sites, and an empirical rate law physically based on hematite free surface sites and bacterial inhibition caused by Fe(II) biosorption. All rate formulations modeled the measured results reasonably well (R 2 values ranged from 0.83 to 0.99). For the elementary rate formulation, log(k f /k b ) was 24.37 - 0.15 (n = 4) and the corresponding forward rate [log(k f )] was 26.46 - 0.27 (n = 4, M -4 h -1 ). These results demonstrate that independently determined reaction-based rate formulations were applicable in another experimental system, as theoretically expected. Therefore, the simulation and prediction of complex biogeochemical systems may eventually be able to be performed using reaction-based models.  相似文献   
844.
R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5 A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.  相似文献   
845.
Organic p‐type materials are potential candidates as solution processable hole transport materials (HTMs) for colloidal quantum dot solar cells (CQDSCs) because of their good hole accepting/electron blocking characteristics and synthetic versatility. However, organic HTMs have still demonstrated inferior performance compared to conventional p‐type CQD HTMs. In this work, organic π‐conjugated polymer (π‐CP) based HTMs, which can achieve performance superior to that of state‐of‐the‐art HTM, p‐type CQDs, are developed. The molecular engineering of the π‐CPs alters their optoelectronic properties, and the charge generation and collection in CQDSCs using them are substantially improved. A device using PBDTTPD‐HT achieves power conversion efficiency (PCE) of 11.53% with decent air‐storage stability. This is the highest reported PCE among CQDSCs using organic HTMs, and even higher than the reported best solid‐state ligand exchange‐free CQDSC using pCQD‐HTM. From the viewpoint of device processing, device fabrication does not require any solid‐state ligand exchange step or layer‐by‐layer deposition process, which is favorable for exploiting commercial processing techniques.  相似文献   
846.
847.
Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.  相似文献   
848.
Objective: To determine the effects of naturally derived probiotic strains individually or combination on a short‐term diet‐induced obesity model. Design and Methods: C57BL/6J mice (n = 50) were randomly divided into five groups, then fed a high‐fat high‐cholesterol diet (HFCD), HFCD and Lactobacillus plantarum KY1032 (PL, 1010cfu/day), HFCD and Lactobacillus curvatus HY7601 (CU, 1010cfu/day), HFCD and in combination with PL+CU (1010cfu/day), or a normal diet (ND) for 9 weeks. Results: PL and CU showed distinct and shared metabolic activity against a panel of 50 carbohydrates. Fat accumulation in adipose tissue and liver was significantly reduced by probiotic strains CU or PL+CU. Probiotic strains CU or PL+CU reduced cholesterol in plasma and liver, while PL+CL had a synergistic effect on hepatic triglycerides. Probiotic strains PL+CU combination was more effective for inhibiting gene expressions of various fatty acid synthesis enzymes in the liver, concomitant with decreases in fatty acid oxidation‐related enzyme activities and their gene expressions. Conclusions: Multi‐strain probiotics may prove more beneficial than single‐strain probiotics to combat fat accumulation and metabolic alterations in diet‐induced obesity.  相似文献   
849.
850.
Minichromosome maintenance 10 (MCM10) is a conserved, abundant nuclear protein, which plays a key role in the initiation of eukaryotic chromosomal DNA replication and elongation. To elucidate the physiological importance of MCM10 in vivo, we generated conventional knockout mice. No MCM10-null embryos were recovered after E8.5, and the mutation was found to be lethal before the implantation stage. Mutant embryos showed apparently normal growth until the morula stage, but growth defects after this stage. The dramatic reduction of 5-bromo-2-deoxyuridine (BrdU) incorporation in the mutant embryo, followed by cell death, suggests that defective cell proliferation may underlie this developmental failure. Taken together, these findings provide the first unequivocal genetic evidence for an essential and non-redundant physiological role of MCM10 during murine peri-implantation development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号