首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   57篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   2篇
  2017年   10篇
  2016年   9篇
  2015年   13篇
  2014年   20篇
  2013年   14篇
  2012年   10篇
  2011年   8篇
  2010年   11篇
  2009年   5篇
  2008年   12篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   12篇
  2003年   8篇
  2002年   7篇
  2001年   15篇
  2000年   9篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1962年   1篇
  1961年   1篇
  1935年   1篇
排序方式: 共有288条查询结果,搜索用时 781 毫秒
281.
The properties of two DNA methyltransferases, termed M. BsuRIa and M. BsuRIb, whose isolation was described in the preceding paper (Günthert, U., Freund, M., and Trautner, T. A. (1981) J. Biol. Chem. 256, 9340-9345) were compared. Both enzymes recognize the same target sequence in double-stranded DNA, leading to methylation of the internal cytosine: 5'GGCC. The enzymes have identical reaction constants with their substrates, DNA (km = 2.7 nM for the 5' GGCC sequence), and S-adenosyl-L-methionine (km = 0.7 microM). Initial rates of methyl group transfer were proportional to enzyme concentration over a range of 50-fold, indicating absence of aggregation. The enzymes are different in their ionic strength requirements using Tris-HCl, pH 8.4. M. BsuRIa is most active at 100 mM, M. BsuRIb at 440 mM. As measured by incorporation kinetics and heat inactivation, M. BsuRIa is the more stable enzyme of the two. Equilibrium dialysis was used to study the mode of methyl group transfer to the DNA with either enzyme. The data indicate that initially S-adenosyl-L-methionine binds to methyltransferase. This complex attaches to either modified or nonmodified DNA. The methyl group will then be transferred to a nonmodified target sequence, leading to the dissociation of enzyme and S-adenosyl-L-homocysteine from the DNA.  相似文献   
282.
283.
Determining the mechanisms by which the sex-chromosome complement (SCC) affects learning, attention, and impulsivity has implications for observed sex differences in prevalence, severity, and prognosis of psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidy. Here, Four Core Genotypes (FCG) mice were evaluated in order to assess the separable and/or interacting effects of gonads (testes vs. ovaries) and their secretions and/or SCC (XX vs. XY) acting via non-gonadal mechanisms on behavior. We tested FCG mice on a reversal-learning task that enables the quantification of aspects of learning, attention and impulsivity. Across testing phases (involving the initial acquisition of a spatial discrimination and subsequent reversal learning), overall error rate was larger in XY compared with XX mice. Although XX and XY groups did not differ in the total number of trials required in order to reach a preset performance criterion, analyses of reversal error types showed more perseverative errors in XY than XX mice, with no difference in regressive errors. Additionally, prepotent-response latencies during the reversal phase were shorter in XY males, as compared with both XX gonadal males and females of either SCC, and failures to sustain the observing response were more frequent in XY mice than XX mice during the acquisition phase. These results indicate that SCC affects the characteristic pattern of response selection during acquisition and reversal performance without affecting the overall learning rate. More broadly, these results show direct effects of the SCC on cognitive processes that are relevant to psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidies.  相似文献   
284.
Assisted colonization as an adaptation strategy to conserve or restore biodiversity in the face of climate change deservedly evokes controversy. Assisted colonization is perceived by some as a last option for conserving endangered species and by others as a risky and unwise management effort due to current gaps of knowledge. Based on the pros and cons of the recent debate, we show that the current discussion mainly focuses on the assisted colonization of rare and endangered species beyond their natural range of distribution. We suggest that a more useful approach for the conservation of endangered species could occur by focusing on the relevant foundation or keystone species, which ensure ecosystem integrity for a multitude of dependent species by governing the habitat structure and micro‐climate of the site. Examples of foundation species include dominant tree species in forests or dominant corals in coral reefs. For a given conservation or restoration need (e.g. conservation of rare species), we recommend the assisted colonization of pre‐adapted ecotypes of the relevant foundation species from climates similar to future expectations for the target site. This approach could lead to climate‐safe habitats for endangered species with minimal adverse effects on recipient ecosystems.  相似文献   
285.
Voltage-gated ClC chloride channels play important roles in cell volume regulation, control of muscle excitability, and probably transepithelial transport. ClC channels can be functionally expressed without other subunits, but it is unknown whether they function as monomers. We now exploit the properties of human mutations in the muscle chloride channel, ClC-1, to explore its multimeric structure. This is based on analysis of the dominant negative effects of ClC-1 mutations causing myotonia congenita (MC, Thomsen's disease), including a newly identified mutation (P480L) in Thomsen's own family. In a co-expression assay, Thomsen's mutation dramatically inhibits normal ClC-1 function. A mutation found in Canadian MC families (G230E) has a less pronounced dominant negative effect, which can be explained by functional WT/G230E heterooligomeric channels with altered kinetics and selectivity. Analysis of both mutants shows independently that ClC-1 functions as a homooligomer with most likely four subunits.  相似文献   
286.
Atmospheric nitrogen (N) deposition is composed of both inorganic nitrogen (IN) and organic nitrogen (ON), and these sources of N may exhibit different impacts on ecosystems. However, our understanding of the impacts of N deposition is largely based on experimental gradients of INs or more rarely ONs. Thus, the effects of N deposition on ecosystem productivity and biodiversity may be biased. We explored the differential impacts of N addition with different IN:ON ratios (0:10, 3:7, 5:5, 7:3, and 10:0) on aboveground net primary productivity (ANPP) of plant community and plant diversity in a typical temperate grassland with a long-term N addition experiment. Soil pH, litter biomass, soil IN concentration, and light penetration were measured to examine the potential mechanisms underlying species loss with N addition. Our results showed that N addition significantly increased plant community ANPP by 68.33%–105.50% and reduced species richness by 16.20%–37.99%. The IN:ON ratios showed no significant effects on plant community ANPP. However, IN-induced species richness loss was about 2.34 times of ON-induced richness loss. Soil pH was positively related to species richness, and they exhibited very similar response patterns to IN:ON ratios. It implies that soil acidification accounts for the different magnitudes of species loss with IN and ON additions. Overall, our study suggests that it might be reasonable to evaluate the effects of N deposition on plant community ANPP with either IN or ON addition. However, the evaluation of N deposition on biodiversity might be overestimated if only IN is added or underestimated if only ON is added.  相似文献   
287.
288.
The resistance of Phi3T DNA to degradation by the restriction enzyme BsuR or its isoschizomer HaeIII is due to obligatory modification of such DNA. Biochemical and genetical experiments indicate that Phi3T codes for a methyltransferase, which methylates Phi3T DNA itself or heterologous DNA at target sites 5'-GG(*)CC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号