首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1954年   1篇
  1950年   1篇
  1940年   2篇
  1938年   1篇
排序方式: 共有96条查询结果,搜索用时 265 毫秒
41.

Background

The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans.

Methodology/Principal Findings

The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar.

Conclusions/Significance

Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.  相似文献   
42.
43.
Autosomal recessive polycystic kidney disease (ARPKD) is a severe, monogenetically inherited kidney and liver disease. PCK rats carrying the orthologous mutant gene serve as a model of human disease, and alterations in lipid profiles in PCK rats suggest that defined subsets of lipids may be useful as molecular disease markers. Whereas MALDI protein imaging mass spectrometry (IMS) has become a promising tool for disease classification, widely applicable workflows that link MALDI lipid imaging and identification as well as structural characterization of candidate disease-classifying marker lipids are lacking. Here, we combine selective MALDI imaging of sulfated kidney lipids and Fisher discriminant analysis (FDA) of imaging data sets for identification of candidate markers of progressive disease in PCK rats. Our study highlights strong increases in lower mass lipids as main classifiers of cystic disease. Structure determination by high-resolution mass spectrometry identifies these altered lipids as taurine-conjugated bile acids. These sulfated lipids are selectively elevated in the PCK rat model but not in models of related hepatorenal fibrocystic diseases, suggesting that they be molecular markers of the disease and that a combination of MALDI imaging with high-resolution MS methods and Fisher discriminant data analysis may be applicable for lipid marker discovery.  相似文献   
44.
Mammalian cells, especially CHO (Chinese Hamster Ovary), are an important host for the production of biopharmaceuticals. Early detection of cellular stress and the onset of apoptosis, ultimately leading to a reduced viability of the culture, are important with respect to process development and monitoring.  相似文献   
45.
A method is presented for serial recording of corticomotor evoked potentials (CMEPs), brainstem-derived motor evoked potentials (BMEPs), and somatosensory evoked potentials (SEPs) via permanently implanted cranial screws. One screw was positioned posterior to lambda (posterior screw), and two screws were positioned over the cortical hind limb areas (cortical screws). SEPs were elicited by stimulation of the hind paw and recorded from the contralateral cortex. BMEPs were stimulated via the posterior screw and recorded from both hind limbs, whereas CMEPs were elicited by repeated bipolar stimulation of the cortex and recorded from the contralateral hind limb. BMEPs and CMEPs differed in several points and can be considered as completely separate motor evoked potentials. While BMEPs consisted of a prominent negative peak with short latency (5–7.5 ms), CMEPs were represented by polyphasic signals with long latencies (17–22 ms). The cortical origin of the CMEPs was confirmed by transecting the corticospinal tracts, which abolished the CMEPs but spared the BMEPs. SEPs consisted of three consecutive peaks with mean latencies of the initial peak ranging between 15 and 17 ms. Dorsal column transection also abolished SEPs. In healthy rats, all three signals were recorded for six consecutive weeks. Signal parameters did not change significantly within this observation period. Rats tolerated the screws and the repeated measurements very well and no negative affect on animal behavior was noted. Thus, this method allows serial recording of SEPs, CMEPs, and BMEPs in chronic rat models.  相似文献   
46.
D(1) dopamine receptors are primary mediators of dopaminergic signaling in the CNS. These receptors internalize rapidly following agonist-induced activation, but the functional significance of this process is unknown. We investigated D(1) receptor endocytosis and signaling in HEK293 cells and cultured striatal neurons using real-time fluorescence imaging and cAMP biosensor technology. Agonist-induced activation of D(1) receptors promoted endocytosis of receptors with a time course overlapping that of acute cAMP accumulation. Inhibiting receptor endocytosis blunted acute D(1) receptor-mediated signaling in both dissociated cells and striatal slice preparations. Although endocytic inhibition markedly attenuated acute cAMP accumulation, inhibiting the subsequent recycling of receptors had no effect. Further, D(1) receptors localized in close proximity to endomembrane-associated trimeric G protein and adenylyl cyclase immediately after endocytosis. Together, these results suggest a previously unanticipated role of endocytosis, and the early endocytic pathway, in supporting rapid dopaminergic neurotransmission.  相似文献   
47.
The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.  相似文献   
48.
49.
50.
Addiction to alcohol and drugs is a major social and economic problem, and there is considerable interest in understanding the molecular mechanisms that promote addictive drives. A number of proteins have been identified that contribute to expression of addictive behaviors. NMDA receptors (NMDARs), a subclass of ionotropic glutamate receptors, have been of particular interest because their physiological properties make them an attractive candidate for gating induction of synaptic plasticity, a molecular change thought to mediate learning and memory. NMDARs are generally inactive at the hyperpolarized resting potentials of many neurons. However, given sufficient depolarization, NMDARs are activated and exhibit long‐lasting currents with significant calcium permeability. Also, in addition to stimulating neurons by direct depolarization, NMDARs and their calcium signaling can allow strong and/or synchronized inputs to produce long‐term changes in other molecules (such as AMPA‐type glutamate receptors) which can last from days to years, binding internal and external stimuli in a long‐term memory trace. Such memories could allow salient drug‐related stimuli to exert strong control over future behaviors and thus promote addictive drives. Finally, NMDARs may themselves undergo plasticity, which can alter subsequent neuronal stimulation and/or the ability to induce plasticity. This review will address recent and past findings suggesting that NMDAR activity promotes drug‐ and alcohol‐related behaviors, with a particular focus on GluN2B subunits as possible central regulators of many addictive behaviors, as well as newer studies examining the importance of non‐canonical NMDAR subunits and endogenous NMDAR cofactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号