首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5507篇
  免费   475篇
  国内免费   4篇
  5986篇
  2023年   25篇
  2022年   45篇
  2021年   96篇
  2020年   60篇
  2019年   92篇
  2018年   115篇
  2017年   103篇
  2016年   170篇
  2015年   283篇
  2014年   285篇
  2013年   339篇
  2012年   498篇
  2011年   528篇
  2010年   303篇
  2009年   260篇
  2008年   335篇
  2007年   346篇
  2006年   299篇
  2005年   312篇
  2004年   297篇
  2003年   287篇
  2002年   247篇
  2001年   39篇
  2000年   54篇
  1999年   59篇
  1998年   57篇
  1997年   44篇
  1996年   33篇
  1995年   42篇
  1994年   41篇
  1993年   27篇
  1992年   19篇
  1991年   20篇
  1990年   23篇
  1989年   20篇
  1988年   11篇
  1987年   12篇
  1986年   22篇
  1985年   7篇
  1984年   9篇
  1983年   14篇
  1982年   18篇
  1981年   12篇
  1980年   10篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1976年   9篇
  1973年   5篇
  1970年   3篇
排序方式: 共有5986条查询结果,搜索用时 15 毫秒
41.
42.
Traditional sequence comparison by alignment employs a mutation model comprised of two events, substitutions and indels (insertions or deletions) of single positions. However, modern genetic analysis knows a variety of more complex mutation events (e.g., duplications, excisions, and rearrangements), especially regarding DNA. With ever more DNA sequence data becoming available, the need to accurately compare sequences which have clearly undergone more complicated types of mutational processes is becoming critical. Herein we introduce a new method for pairwise alignment and comparison of sequences with respect to the special evolution of tandem repeats: substitutions and indels of single positions and, additionally, duplications and excisions of variable degree (i.e., of one or more repeat copies simultaneously) are taken into account. To evaluate our method, we apply it to the spa VNTR (variable number of tandem repeats) cluster of Staphylococcus aureus, a bacterium of high medical importance  相似文献   
43.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
44.
Protein identification by matrix-assisted laser desorption/ionization mass-spectrometry peptide mass fingerprinting (MALDI-MS PMF) represents a cornerstone of proteomics. However, it often fails to identify low-molecular-mass proteins, protein fragments, and protein mixtures reliably. To overcome these limitations, PMF can be complemented by tandem mass spectrometry and other search strategies for unambiguous protein identification. The present study explores the advantages of using a MALDI-MS-based approach, designated minimal protein identifier (MPI) approach, for protein identification. This is illustrated for culture supernatant (CSN) proteins of Mycobacterium tuberculosis H37Rv after separation by two-dimensional gel electrophoresis (2-DE). The MPI approach takes into consideration that proteins yield characteristic peptides upon proteolytic cleavage. In this study, peptide mixtures derived from tryptic protein cleavage were analyzed by MALDI-MS and the resulting spectra were compared with template spectra of previously identified counterparts. The MPI approach allowed protein identification by few protein-specific signature peptide masses and revealed truncated variants of mycobacterial elongation factor EF-Tu, previously not identified by PMF. Furthermore, the MPI approach can be employed to track proteins in 2-DE gels, as demonstrated for the 14 kDa antigen, the 10 kDa chaperone, and the conserved hypothetical protein Rv0569 of M. tuberculosis H37Rv. Furthermore, it is shown that the power of the MPI approach strongly depends on distinct factors, most notably on the complexity of the proteome analyzed and accuracy of the mass spectrometer used for peptide mass determination.  相似文献   
45.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
46.
Summary Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tissue of origin. Microvasculature was localized in situ by immunohistochemitry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids BRENCs were cultured from these organoids in endothelial specific medium and characterized by staining for endothelial markers. Microvessels were a prominent feature of intralobular tissue as evidenced by immunostaining against endothelial specific markers such as CD31, VE-cadherin, and von Willebrand factor (VWF). Double staining against VE-cadherin and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) showed that blood and lymphatic vessels could be distinguished. An antibody against CD31 was used to refine protocols for isolation of microvasculature from reduction mammoplasties. BRENCs retained critical traits even at high passage, including uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-α. The first signs of senescence in passage 14 were accompained by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by β-galactosidase staining. We demonstrate here that breast microvasculature may serve as a large-scale source for expansion of BRENCs with molecular and functional traits preserved. These cells will form the basis for studies on the role of endothelial cells in breast morphogenesis.  相似文献   
47.
Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.  相似文献   
48.
Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca2+ influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.  相似文献   
49.
Herpesviral capsids are assembled in the host cell nucleus and are subsequently translocated to the cytoplasm. During this process it has been demonstrated that the human cytomegalovirus proteins pUL50 and pUL53 interact and form, together with other viral and cellular proteins, the nuclear egress complex at the nuclear envelope. In this study we provide evidence that specific residues of a conserved N-terminal region of pUL50 determine its intranuclear interaction with pUL53. In silico evaluation and biophysical analyses suggested that the conserved region forms a regular secondary structure adopting a globular fold. Importantly, site-directed replacement of individual amino acids by alanine indicated a strong functional influence of specific residues inside this globular domain. In particular, mutation of the widely conserved residues Glu-56 or Tyr-57 led to a loss of interaction with pUL53. Consistent with the loss of binding properties, mutants E56A and Y57A showed a defective function in the recruitment of pUL53 to the nuclear envelope in expression plasmid-transfected and human cytomegalovirus-infected cells. In addition, in silico analysis suggested that residues 3-20 form an amphipathic α-helix that appears to be conserved among Herpesviridae. Point mutants revealed a structural role of this N-terminal α-helix for pUL50 stability rather than a direct role in the binding of pUL53. In contrast, the central part of the globular domain including Glu-56 and Tyr-57 is directly responsible for the functional interaction with pUL53 and thus determines formation of the basic nuclear egress complex.  相似文献   
50.
Deletion of the substituted pyrimidine ring in purine-2'-deoxynucleoside 5'-monophosphates leads to the artificial nucleotide analog dImMP(2-) . This analog can be incorporated into DNA to yield, upon addition of Ag(+) ions, a molecular wire. Here, we measured the acidity constants of H(2) (dImMP)(±) having one proton at N(3) and one at the PO$\rm{{_{3}^{2-}}}$ group by potentiometric pH titrations in aqueous solution. The micro acidity constants show that N(3) is somewhat more basic than PO$\rm{{_{3}^{2-}}}$ and, consequently, the (H??dImMP)(-) tautomer with the proton at N(3) dominates to ca. 75%. The calculated micro acidity constants are confirmed by (31) P- and (1) H-NMR chemical shifts. The assembled data allow many quantitative comparisons, e.g., the N(3)-protonated and thus positively charged imidazole residue facilitates deprotonation of the P(O)(2) (OH)(-) group by 0.3?pK units. Information on the intrinsic site basicities also allows predictions about metal-ion binding; e.g., Mg(2+) and Mn(2+) will primarily coordinate to the phosphate group, whereas Ni(2+) and Cu(2+) will preferably bind to N(3). Macrochelate formation for these metal ions is also predicted. The micro acidity constant for N(3)H(+) deprotonation in the (H???dImMP?H)(±) species (pk(a) 6.46) and the M(n+) -binding properties are of relevance for understanding the behavior of dImMP units present in DNA hairpins and metalated duplexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号