首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5506篇
  免费   476篇
  国内免费   4篇
  5986篇
  2023年   25篇
  2022年   45篇
  2021年   96篇
  2020年   60篇
  2019年   92篇
  2018年   115篇
  2017年   103篇
  2016年   170篇
  2015年   283篇
  2014年   285篇
  2013年   338篇
  2012年   498篇
  2011年   528篇
  2010年   303篇
  2009年   260篇
  2008年   334篇
  2007年   346篇
  2006年   299篇
  2005年   313篇
  2004年   297篇
  2003年   287篇
  2002年   247篇
  2001年   39篇
  2000年   54篇
  1999年   61篇
  1998年   57篇
  1997年   44篇
  1996年   33篇
  1995年   42篇
  1994年   41篇
  1993年   27篇
  1992年   19篇
  1991年   20篇
  1990年   23篇
  1989年   20篇
  1988年   11篇
  1987年   12篇
  1986年   22篇
  1985年   7篇
  1984年   9篇
  1983年   13篇
  1982年   18篇
  1981年   12篇
  1980年   10篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1976年   9篇
  1973年   5篇
  1970年   3篇
排序方式: 共有5986条查询结果,搜索用时 0 毫秒
111.
The Farquhar et al. model of C(3) photosynthesis is frequently used to study the effect of global changes on the biosphere. Its two main parameters representing photosynthetic capacity, V(cmax) and J(max), have been observed to acclimate to plant growth temperature for single species, but a general formulation has never been derived. Here, we present a reanalysis of data from 36 plant species to quantify the temperature dependence of V(cmax) and J(max) with a focus on plant growth temperature, i.e. the plants' average ambient temperature during the preceding month. The temperature dependence of V(cmax) and J(max) within each data set was described very well by a modified Arrhenius function that accounts for a decrease of V(cmax) and J(max) at high temperatures. Three parameters were optimized: base rate, activation energy and entropy term. An effect of plant growth temperature on base rate and activation energy could not be observed, but it significantly affected the entropy term. This caused the optimum temperature of V(cmax) and J(max) to increase by 0.44 degrees C and 0.33 degrees C per 1 degrees C increase of growth temperature. While the base rate of V(cmax) and J(max) seemed not to be affected, the ratio J(max) : V(cmax) at 25 degrees C significantly decreased with increasing growth temperature. This moderate temperature acclimation is sufficient to double-modelled photosynthesis at 40 degrees C, if plants are grown at 25 degrees C instead of 17 degrees C.  相似文献   
112.
Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities. Michaelis-Menten kinetic parameters for dithiothreitol-driven VKOR activity were: K(m) (μM) = 4.15 (vitamin K(1) epoxide) and 11.24 (vitamin K(2) epoxide); V(max) (nmol·mg(-1)·hr(-1)) = 2.57 (vitamin K(1) epoxide) and 13.46 (vitamin K(2) epoxide). Oxidative stress induced by H(2)O(2) applied to cultured cells up-regulated VKORC1L1 expression and VKOR activity. Cell viability under conditions of no induced oxidative stress was increased by the presence of vitamins K(1) and K(2) but not ubinquinone-10 and was specifically dependent on VKORC1L1 expression. Intracellular reactive oxygen species levels in cells treated with 2,3-dimethoxy-1,4-naphthoquinone were mitigated in a VKORC1L1 expression-dependent manner. Intracellular oxidative damage to membrane intrinsic proteins was inversely dependent on VKORC1L1 expression and the presence of vitamin K(1). Taken together, our results suggest that VKORC1L1 is responsible for driving vitamin K-mediated intracellular antioxidation pathways critical to cell survival.  相似文献   
113.
Olsson J  Svanbäck R  Eklöv P 《Oecologia》2007,152(1):48-56
Spatial and temporal heterogeneity in the environment is a common feature affecting many natural populations. For example, both the resource levels and optimal habitat choices of individuals likely change over time. One way for organisms to cope with environmental variation is to display adaptive plasticity in traits such as behavior and morphology. Since trait plasticity is hypothesized to be a prerequisite for character divergence, studies of mechanisms behind such plasticity are warranted. In this study, we looked at the interaction of two potentially important environmental variables on behavioral and morphological plasticity in Eurasian perch (Perca fluviatilis L.). More specifically, the plastic responses in activity and morphology of perch exposed to different resource levels and simulated habitat types were studied in an aquarium experiment. The resource level experienced had a large influence on plasticity in both activity and morphology. Behavioral adaptations have been thought to mediate morphological transitions, and we suggest that the morphological response to the resource level was mediated by differences in activity and growth rates. The habitat type also affected morphological plasticity but to a lesser extent, and there was no effect on activity from habitat type. Based on these results, we suggest that it is essential to include several environmental factors acting in concert when studying mechanisms behind trait plasticity. We also propose that variation in resource levels might play a key role in fostering trait plasticity in at least fish populations, while other environmental variables such as divergent habitat complexities and prey types might be less influential. Dynamics in resource levels and optimal habitat choices might thus be important factors influencing character divergence in natural populations.  相似文献   
114.
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to?orient the mitotic spindle during NB asymmetric division.  相似文献   
115.
MAPK signalling is a complex process not only requiring the core components Raf, MEK and Erk, but also many proteins like the scaffold protein KSR and several kinases to specifically localize, modulate and fine-tune the outcome of the pathway in a cell context specific manner. In mammals, protein kinase CK2 was shown to bind to the scaffold protein KSR and to phosphorylate Raf proteins at a conserved serine residue in the negative-charge regulatory (N−) region, thereby facilitating maximal activity of the MAPK signalling pathway. In this work we show that in Drosophila CK2 is also bound to KSR. However, despite the presence of a corresponding serine residue in the N-region of DRaf, CK2-mediated phosphorylation of DRaf takes place on a serine residue at the N-terminus and is required for Erk activation. Previous work identified polyamines as regulators of CK2 kinase activity. The main cellular source of polyamines is the catabolism of amino acids. Evidence is provided that phosphorylation of DRaf by CK2 is modulated by polyamines, with spermine being the most potent inhibitor of the reaction. We suggest that CK2 is able to monitor intracellular polyamine levels and translates this information to modulate MAPK signalling.  相似文献   
116.
117.
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ~50% decrease of the number of ~2.7-? Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase.  相似文献   
118.
We generated from a single blood sample five independent human mAbs that recognized the Sa antigenic site on the head of influenza hemagglutinin and exhibited inhibitory activity against a broad panel of H1N1 strains. All five Abs used the V(H)3-7 and J(H)6 gene segments, but at least four independent clones were identified by junctional analysis. High-throughput sequence analysis of circulating B cells revealed that each of the independent clones were members of complex phylogenetic lineages that had diversified widely using a pattern of progressive diversification through somatic mutation. Unexpectedly, B cells encoding multiple diverging lineages of these clones, including many containing very few mutations in the Ab genes, persisted in the circulation. Conversely, we noted frequent instances of amino acid sequence convergence in the Ag combining sites exhibited by members of independent clones, suggesting a strong selection for optimal binding sites. We suggest that maintenance in circulation of a wide diversity of somatic variants of dominant clones may facilitate recognition of drift variant virus epitopes that occur in rapidly mutating virus Ags, such as influenza hemagglutinin. In fact, these Ab clones recognize an epitope that acquired three glycosylation sites mediating escape from previously isolated human Abs.  相似文献   
119.
Human polo-like kinase 1 (Plk1) is involved in cell proliferation and overexpressed in a broad variety of different cancer types. Due to its crucial role in cancerogenesis Plk1 is a potential target for diagnostic and therapeutic applications. Peptidic ligands can specifically interact with the polo-box domain (PBD) of Plk1, a C-terminal located phosphoepitope binding motif. Recently, phosphopeptide MQSpTPL has been identified as ligand with high binding affinity. However, a radiolabeled version of this peptide showed only insufficient cellular uptake. The present study investigated peptide dimers consisting of PBD-targeting phosphopeptide MQSpTPL and a cell-penetrating peptide (CPP) moiety. The new constructs demonstrate superior uptake in different cancer cell-lines compared to the phosphopeptide alone. Furthermore, we could demonstrate binding of phosphopeptide-CPP dimers to PBD of Plk1 making the compounds interesting leads for the development of molecular probes for imaging Plk1 in cancer.  相似文献   
120.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号