首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4540篇
  免费   264篇
  国内免费   3篇
  4807篇
  2024年   8篇
  2023年   21篇
  2022年   38篇
  2021年   75篇
  2020年   54篇
  2019年   85篇
  2018年   88篇
  2017年   81篇
  2016年   138篇
  2015年   230篇
  2014年   221篇
  2013年   277篇
  2012年   396篇
  2011年   429篇
  2010年   240篇
  2009年   206篇
  2008年   270篇
  2007年   275篇
  2006年   250篇
  2005年   248篇
  2004年   229篇
  2003年   227篇
  2002年   194篇
  2001年   30篇
  2000年   41篇
  1999年   47篇
  1998年   42篇
  1997年   33篇
  1996年   27篇
  1995年   29篇
  1994年   31篇
  1993年   25篇
  1992年   15篇
  1991年   19篇
  1990年   20篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   19篇
  1985年   5篇
  1984年   9篇
  1983年   10篇
  1982年   15篇
  1981年   10篇
  1980年   9篇
  1979年   11篇
  1978年   8篇
  1977年   6篇
  1976年   8篇
  1973年   4篇
排序方式: 共有4807条查询结果,搜索用时 281 毫秒
151.
One of the earliest events following TCR triggering is TCR down-regulation. However, the mechanisms behind TCR down-regulation are still not fully known. Some studies have suggested that only directly triggered TCR are internalized, whereas others studies have indicated that, in addition to triggered receptors, nonengaged TCR are also internalized (comodulated). In this study, we used transfected T cells expressing two different TCR to analyze whether comodulation took place. We show that TCR triggering by anti-TCR mAb and peptide-MHC complexes clearly induced internalization of nonengaged TCR. By using a panel of mAb against the Ti beta chain, we demonstrate that the comodulation kinetics depended on the affinity of the ligand. Thus, high-affinity mAb (K(D) = 2.3 nM) induced a rapid but reversible comodulation, whereas low-affinity mAb (K(D) = 6200 nM) induced a slower but more permanent type of comodulation. Like internalization of engaged TCR, comodulation was dependent on protein tyrosine kinase activity. Finally, we found that in contrast to internalization of engaged TCR, comodulation was highly dependent on protein kinase C activity and the CD3 gamma di-leucine-based motif. Based on these observations, a physiological role of comodulation is proposed and the plausibility of the TCR serial triggering model is discussed.  相似文献   
152.
Early life stress may have a lasting impact on the developmental programming of the dopamine (DA) system implicated in psychosis. Early adversity could promote resilience by calibrating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the individual’s fit with the predicted stressful environment. Aberrant reactivity to such match between proximal and distal environments may, however, enhance psychosis disease risk. We explored the combined effects of childhood adversity and adult stress by exposing 12 unmedicated individuals with a diagnosis of non-affective psychotic disorder (NAPD) and 12 healthy controls (HC) to psychosocial stress during an [18F]fallypride positron emission tomography. Childhood trauma divided into early (ages 0–11 years) and late (12–18 years) was assessed retrospectively using a questionnaire. A significant group x childhood trauma interaction on the spatial extent of stress-related [18F]fallypride displacement was observed in the mPFC for early (b = -8.45, t(1,23) = -3.35, p = .004) and late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). In healthy individuals, the spatial extent of mPFC DA activity under acute psychosocial stress was positively associated with the severity of early (b = 7.23, t(11) = 3.06, p = .016) as well as late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). Additionally, a trend-level main effect of early childhood trauma on subjective stress response emerged within this group (b = -.7, t(11) = -2, p = .07), where higher early trauma correlated with lower subjective stress response to the task. In the NAPD group, childhood trauma was not associated with the spatial extent of the tracer displacement in mPFC (b = -1.22, t(11) = -0.67), nor was there a main effect of trauma on the subjective perception of stress within this group (b = .004, t(11) = .01, p = .99). These findings reveal a potential mechanism of neuroadaptation of prefrontal DA transmission to early life stress and suggest its role in resilience and vulnerability to psychosis.  相似文献   
153.
Habitat fragmentation is a ubiquitous by-product of human activities that can alter the genetic structure of natural populations, with potentially deleterious effects on population persistence and evolutionary potential. When habitat fragmentation results in the subdivision of a population, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulation, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulations and greater genetic divergence among them. Theoretical and simulation analyses predict that these two main genetic effects of fragmentation, greater differentiation among resulting subpopulation and reduced genetic diversity within them, will proceed at very different rates. Despite important implications for the interpretation of genetics data from fragmented populations, empirical evidence for this phenomenon has been lacking. In this analysis, we carry out an empirical study in population of an alpine meadow-dwelling butterfly, which have become fragmented increasing forest cover over five decades. We show that genetic differentiation among subpopulations (G(ST)) is most highly correlated with contemporary forest cover, while genetics diversity within subpopulation (expected heterozygosity) is better correlated with the spatial pattern of forest cover 40 years in the past. Thus, where habitat fragmentation has occurred in recent decades, genetic differentiation among subpopulation can be near equilibrium while contemporary measures of within subpopulation diversity may substantially overestimate the equilibrium values that will eventually be attained.  相似文献   
154.
We describe novel CHRDL1 mutations in ten families with X-linked megalocornea (MGC1). Our mutation-positive cohort enabled us to establish ultrasonography as a reliable clinical diagnostic tool to distinguish between MGC1 and primary congenital glaucoma (PCG). Megalocornea is also a feature of Neuhäuser or megalocornea-mental retardation (MMR) syndrome, a rare condition of unknown etiology. In a male patient diagnosed with MMR, we performed targeted and whole exome sequencing (WES) and identified a novel missense mutation in CHRDL1 that accounts for his MGC1 phenotype but not his non-ocular features. This finding suggests that MMR syndrome, in some cases, may be di- or multigenic. MGC1 patients have reduced central corneal thickness (CCT); however no X-linked loci have been associated with CCT, possibly because the majority of genome-wide association studies (GWAS) overlook the X-chromosome. We therefore explored whether variants on the X-chromosome are associated with CCT. We found rs149956316, in intron 6 of CHRDL1, to be the most significantly associated single nucleotide polymorphism (SNP) (p = 6.81×10−6) on the X-chromosome. However, this association was not replicated in a smaller subset of whole genome sequenced samples. This study highlights the importance of including X-chromosome SNP data in GWAS to identify potential loci associated with quantitative traits or disease risk.  相似文献   
155.
A novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled rabbit skeletal actin (RS-actin) onto both ends of the short rhodamine-phalloidin-stabilized Plasmodium falciparum actin I (Pf-actin) filaments. Following annealing, hybrid filaments of micron length and “zebra-striped” appearance are observed by fluorescence microscopy that are stable enough to move over myosin class II motors in a gliding filament assay. Using negative stain electron microscopy we find that pure Pf-actin stabilized by jasplakinolide (JAS) also forms long filaments, indistinguishable in length from RS-actin filaments, and long enough to be characterized structurally. To compare structures in near physiological conditions in aqueous solution we imaged Pf-actin and RS-actin filaments by atomic force microscopy (AFM). We found the monomer stacking to be distinctly different for Pf-actin compared with RS-actin, such that the pitch of the double helix of Pf-actin filaments was 10% larger. Our results can be explained by a rotational angle between subunits that is larger in the parasite compared with RS-actin. Modeling of the AFM data using high-resolution actin filament models supports our interpretation of the data. The structural differences reported here may be a consequence of weaker inter- and intra-strand contacts, and may be critical for differences in filament dynamics and for regulation of parasite motility.  相似文献   
156.
Glutathione transferase reaches 0.5–0.8 mM concentration in the cell so it works in vivo under the unusual conditions of, [S] ? [E]. As glutathione transferase lowers the pKa of glutathione (GSH) bound to the active site, it increases the cytosolic concentration of deprotonated GSH about five times and speeds its conjugation with toxic compounds that are non-typical substrates of this enzyme. This acceleration becomes more efficient in case of GSH depletion and/or cell acidification. Interestingly, the enzymatic conjugation of GSH to these toxic compounds does not require the assumption of a substrate–enzyme complex; it can be explained by a simple bimolecular collision between enzyme and substrate. Even with typical substrates, the astonishing concentration of glutathione transferase present in hepatocytes, causes an unusual “inverted” kinetics whereby the classical trends of v versus E and v versus S are reversed.  相似文献   
157.
The regulation of neutrophil functions by Type I cGMP-dependent protein kinase (cGKI) was investigated in wild-type (WT) and cGKI-deficient (cGKI-/-) mice. We demonstrate that murine neutrophils expressed cGKIalpha. Similar to the regulation of Ca2+ by cGKI in other cells, there was a cGMP-dependent decrease in Ca2+ transients in response to C5a in WT, but not cGKI-/- bone marrow neutrophils. In vitro chemotaxis of bone marrow neutrophils to C5a or IL-8 was significantly greater in cGKI-/- than in WT. Enhanced chemotaxis was also observed with cGKI-/- peritoneal exudate neutrophils (PE-N). In vivo chemotaxis with an arachidonic acid-induced inflammatory ear model revealed an increase in both ear weight and myeloperoxidase (MPO) activity in ear punches of cGKI-/- vs WT mice. These changes were attributable to enhanced vascular permeability and increased neutrophil infiltration. The total extractable content of MPO, but not lysozyme, was significantly greater in cGKI-/- than in WT PE-N. Furthermore, the percentage of MPO released in response to fMLP from cGKI-/- (69%) was greater than that from WT PE-N (36%). PMA failed to induce MPO release from PE-N of either genotype. In contrast, fMLP and PMA released equivalent amounts of lysozyme from PE-N. However, the percentage released was less in cGKI-/- (approximately 60%) than in WT (approximately 90%) PE-N. Superoxide release (maximum velocity) revealed no genotype differences in responses to PMA or fMLP stimulation. In summary, these results show that cGKIalpha down-regulates Ca2+ transients and chemotaxis in murine neutrophils. The regulatory influences of cGKIalpha on the secretagogue responses are complex, depending on the granule subtype.  相似文献   
158.
159.
Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process‐based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long‐term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long‐term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico‐chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long‐term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico‐chemical and ecological effects of anthropogenic stressors on surface water quality.  相似文献   
160.

Introduction

The increased thrombotic risk of oral contraceptives (OC) has been attributed to various alterations of the hemostatic system, including acquired resistance to activated protein C (APC). To evaluate to what extent OC-associated APC resistance induces a prothrombotic state we monitored plasma levels of thrombin and molecular markers specific for thrombin formation in women starting OC use. Elevated plasma levels of thrombin have been reported to characterize situations of high thrombotic risk such as trauma-induced hypercoagulability, but have not yet been studied during OC use.

Patients and Methods

Blood samples were collected prospectively from healthy women (n = 21) before and during three menstruation cycles after start of OC. APC resistance was evaluated using a thrombin generation-based assay. Plasma levels of thrombin and APC were directly measured using highly sensitive oligonucleotide-based enzyme capture assay (OECA) technology. Thrombin generation markers and other hemostasis parameters were measured additionally.

Results

All women developed APC resistance as indicated by an increased APC sensitivity ratio compared with baseline after start of OC (p = 0.0003). Simultaneously, plasma levels of thrombin, prothrombin fragment 1+2, and of thrombin-antithrombin complexes did not change, ruling out increased thrombin formation. APC plasma levels were also not influenced by OC use, giving further evidence that increased thrombin formation did not occur.

Conclusions

In the majority of OC users no enhanced thrombin formation occurs despite the development of APC resistance. It cannot be ruled out, however, that thrombin formation might occur to a greater extent in the presence of additional risk factors. If this were the case, endogenous thrombin levels might be a potential biomarker candidate to identify women at high thrombotic risk during OC treatment. Large-scale studies are required to assess the value of plasma levels of thrombin as predictors of OC-associated thrombotic risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号