首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   25篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   16篇
  2012年   16篇
  2011年   22篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   14篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   4篇
  1984年   2篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1940年   1篇
  1939年   1篇
  1937年   1篇
  1936年   1篇
  1927年   1篇
  1923年   1篇
  1921年   2篇
  1914年   2篇
  1909年   1篇
  1905年   1篇
  1904年   2篇
  1901年   1篇
  1890年   1篇
  1887年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
71.
Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe‐associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms for suppression of two branches of MAMP‐activated MAP kinase (MAPK) cascades. In addition to blocking MKK5 (MAPK kinase 5) activation in the MEKK1 (MAPK kinase kinase 1)/MEKKs–MKK4/5–MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in the MEKK1–MKK1/2–MPK4 cascade and the plasma membrane‐localized receptor‐like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane‐localized receptor‐like kinase that is involved in multiple MAMP signaling. The interaction between BAK1 and HopF2 and between two other P. syringae effectors, AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of AvrPto, AvrPtoB and HopF2, the strong growth defects or lethality associated with ectopic expression of these effectors in wild‐type Arabidopsis transgenic plants were largely alleviated in bak1 mutant plants. Thus, our results provide genetic evidence to show that BAK1 is a physiological target of AvrPto, AvrPtoB and HopF2. Identification of BAK1 as an additional target of HopF2 virulence not only explains HopF2 suppression of multiple MAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors act through multiple targets in host cells.  相似文献   
72.

Background & Aims

A combination of pegylated interferon-alpha and ribavirin (PR) is the standard therapy for patients with chronic hepatitis C. The impact of polymorphism of interleukin-28B (IL28B) on sustained virological response (SVR) to PR has been well documented in patients with CHC genotype-1 (GT1), but it is controversial in genotype-2 (GT2) CHC patients. This study investigated the predictability of six single nucleotide polymorphisms (SNP) of IL28B on the treatment responses of PR in patients with CHC GT2.

Method

197 CHC GT2 consecutive patients who received PR treatment in our prospective cohort were enrolled. Hepatitis C virus (HCV) genotyping, quantification of HCV-RNA and genotyping of the ten SNPs of IL28B were performed. Six SNPs of IL28B were chosen for analysis. The propensity score matching (PSM) analysis was applied using patients with CHC GT1 in another prospective cohort as a positive comparison to avoid covariate bias.

Results

The distribution of the six SNPs was similar in GT1 and GT2 patients. Five of these SNPs had strong association with treatment responses in GT1 but not in GT2 patients. After PSM analysis, these five SNPs still showed strong association with rapid virological response (RVR), cEVR and SVR in GT1 and had no influence in GT2 patients. Furthermore, rs12979860 and baseline viral load were the predictors for both RVR and SVR in GT1 patients. However, only baseline viral load could predict RVR and SVR in GT2 patients. In addition, in patients without RVR, rs12979860 was the only predictor for SVR in GT1 but no predictor for SVR was found in GT2.

Conclusions

The genetic polymorphisms of IL28B had no impact on treatment responses in GT2 patients.  相似文献   
73.
Plant mitogen-activated protein kinase signaling cascades   总被引:15,自引:0,他引:15  
Mitogen-activated protein kinase (MAPK) cascades have emerged as a universal signal transduction mechanism that connects diverse receptors/sensors to cellular and nuclear responses in eukaryotes. Recent studies in plants indicate that MAPK cascades are vital to fundamental physiological functions involved in hormonal responses, cell cycle regulation, abiotic stress signaling, and defense mechanisms. New findings have revealed the complexity and redundancy of the signaling components, the antagonistic nature of distinct pathways, and the use of both positive and negative regulatory mechanisms.  相似文献   
74.
75.
76.
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.  相似文献   
77.
Glc has hormone-like functions and controls many vital processes through mostly unknown mechanisms in plants. We report here on the molecular cloning of GLUCOSE INSENSITIVE1 (GIN1) and ABSCISIC ACID DEFICIENT2 (ABA2) which encodes a unique Arabidopsis short-chain dehydrogenase/reductase (SDR1) that functions as a molecular link between nutrient signaling and plant hormone biosynthesis. SDR1 is related to SDR superfamily members involved in retinoid and steroid hormone biosynthesis in mammals and sex determination in maize. Glc antagonizes ethylene signaling by activating ABA2/GIN1 and other abscisic acid (ABA) biosynthesis and signaling genes, which requires Glc and ABA synergistically. Analyses of aba2/gin1 null mutants define dual functions of endogenous ABA in inhibiting the postgermination developmental switch modulated by distinct Glc and osmotic signals and in promoting organ and body size and fertility in the absence of severe stress. SDR1 is sufficient for the multistep conversion of plastid- and carotenoid-derived xanthoxin to abscisic aldehyde in the cytosol. The surprisingly restricted spatial and temporal expression of SDR1 suggests the dynamic mobilization of ABA precursors and/or ABA.  相似文献   
78.
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.  相似文献   
79.
Shan L  He P  Sheen J 《Cell host & microbe》2007,1(3):167-174
The evolutionarily conserved MAP kinase (MAPK) cascades play essential roles in plant and animal innate immunity. A recent explosion of research has uncovered a myriad of virulence strategies used by pathogenic bacteria to intercept MAPK signaling through diverse type III effectors injected into host cells. Here, we review the latest literature and discuss the various mechanisms that pathogenic bacteria use to manipulate host MAPK signaling cascades.  相似文献   
80.
Cai L  Lu J  Sheen V  Wang S 《Biomacromolecules》2012,13(2):342-349
We present a novel photopolymerizable poly(L-lysine) (PLL) and use it to modify polyethylene glycol diacrylate (PEGDA) hydrogels for creating a better, permissive nerve cell niche. Compared with their neutral counterparts, these PLL-grafted hydrogels greatly enhance pheochromocytoma (PC12) cell survival in encapsulation, proliferation, and neurite growth and also promote neural progenitor cell proliferation and differentiation capacity, represented by percentages of both differentiated neurons and astrocytes. The role of efficiently controlled substrate stiffness in regulating nerve cell behavior is also investigated and a polymerizable cationic small molecule, [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MTAC), is used to compare with this newly developed PLL. The results indicate that these PLL-grafted hydrogels are promising biomaterials for nerve repair and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号